\[a_{n+2}-(2^{n+1}+2^{-n}) a_{n+1}+a_n=0\]\(a_1=1, a_2=3\). Find \(a_n\).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

\[a_{n+2}-(2^{n+1}+2^{-n}) a_{n+1}+a_n=0\]\(a_1=1, a_2=3\). Find \(a_n\).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

What have you tried?
I saw this problem before and know a solution which is somewhat complicated. I'm going to wait for other solutions :) I think this problem is composed by mukushla, he wants us to try...
thanks gane :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Here's my thoughts so far: The ordinary power series generating function satisfies this equation: \[f(x)-\frac{2}{x} f(\frac{x}{2})-2f(2x)-\frac{1}{x}=0\]
@Empty you study physics? That seems like a physicist approach!
I study everything I can get my hands on lol
good :) btw, how you got that?
Sorry that wasn't quite the link I wanted, this is the book I'm reading currently generatingfunctionology: https://www.math.upenn.edu/~wilf/DownldGF.html
thanks for the link
\[\begin{split} a_n &= \left(2^{n+1}+2^{-n}\right)a_{n-1}-a_{n-2} =ba_{n-1}-a_{n-2}\\ &= b\left(ba_{n-2}-a_{n-3}\right)-a_{n-2} \\ &= \left(b^2-1\right)a_{n-2}-a_{n-3} \\ &= \left(b^3-b-1\right)a_{n-3}-a_{n-4} \\ &= \left(b^{k+1}-\sum_{m=0}^{k-1}b^m\right)a_{n-k-1}-a_{n-k-2} \\ &= \left(b^{k+1}-\sum_{m=0}^{k-1}b^m\right)a_{n-k-1}-a_{n-k-2} \\ &= \left(b^{k+1}-\frac{1-b^{k}}{1-b}\right)a_{n-k-1}-a_{n-k-2} \\ \end{split}\]For our base case, we plug in \(k=n-3\): \[ a_n = \left(b^{n-2}-\frac{1-b^{n-3}}{1-b}\right)a_2+a_1 = 3\left(b^{n-2}-\frac{1-b^{n-3}}{1-b}\right)+1 \]Then substitute the \(b=2^{n+1}+2^{-n}\).
It looks good, maybe you have some little mistakes, find \(a_3\) from your formula and once again directly from the relation and compare, see if the formula is right or not :)
\[\begin{split} a_n &= \left(2^{n+1}+2^{-n}\right)a_{n-1}-a_{n-2} =ba_{n-1}-a_{n-2}\\ &= b\left(ba_{n-2}-a_{n-3}\right)-a_{n-2} \\ &= \left(b^2-1\right)a_{n-2}-a_{n-3} \\ &= \left(b^3-b-1\right)a_{n-3}-a_{n-4} \\ &= \left(b^{k}-\sum_{m=0}^{k-2}b^m\right)a_{n-k}-a_{n-k-1} \\ &= \left(b^{k}-\sum_{m=0}^{k-2}b^m\right)a_{n-k}-a_{n-k-1} \\ &= \left(b^{k}-\frac{1-b^{k-1}}{1-b}\right)a_{n-k}-a_{n-k-1} \\ \end{split}\]For our base case, we plug in \(k=n-2\): \[ a_n = \left(b^{n-2}-\frac{1-b^{n-3}}{1-b}\right)a_2+a_1 = 3\left(b^{n-2}-\frac{1-b^{n-3}}{1-b}\right)+1 \]Then substitute the \(b=2^{n+1}+2^{-n}\).
There is a special case at \(n=3\) because for that case, we have the coefficient \(b\) rather than \(b-\frac{1}{1-b}\)
In fact, all the \(n<4\) cases probably will not hold, because that geometric sum assumes higher values for \(n\).
thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question