ashontae19
  • ashontae19
can anyone answer these
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ashontae19
  • ashontae19
1 Attachment
ashontae19
  • ashontae19
Michele_Laino
  • Michele_Laino
do you know the definition of a rectangle?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ashontae19
  • ashontae19
yes im sorry thats the wrong one
1 Attachment
ashontae19
  • ashontae19
i meant these questions
Michele_Laino
  • Michele_Laino
we can write this: \[\Large \begin{gathered} {i^2} = - 1 \hfill \\ \hfill \\ {i^4} = {i^2}{i^2} = \left( { - 1} \right) \times \left( { - 1} \right) = 1 \hfill \\ \hfill \\ {i^5} = {i^4}i = ... \hfill \\ \hfill \\ {i^{17}} = {\left( {{i^4}} \right)^4}i = ... \hfill \\ \hfill \\ {i^{265}} = {\left\{ {{{\left( {{i^4}} \right)}^4}} \right\}^4}{i^9} = {\left[ {{{\left\{ {{{\left( {{i^4}} \right)}^4}} \right\}}^4}} \right]^4}{\left( {{i^2}} \right)^4}i = ... \hfill \\ \end{gathered} \] please complete
ashontae19
  • ashontae19
1. 1^5 , i^17 , I^265 = D 2.7i E 3.-10 G 4. 5/2 I
Michele_Laino
  • Michele_Laino
oops... \[\Large {i^{265}} = {\left[ {{{\left\{ {{{\left( {{i^4}} \right)}^4}} \right\}}^4}} \right]^4}{i^9} = {\left[ {{{\left\{ {{{\left( {{i^4}} \right)}^4}} \right\}}^4}} \right]^4}{\left( {{i^2}} \right)^4}i = ...\]
Michele_Laino
  • Michele_Laino
\[\Large 2i + 5i = i\left( {2 + 5} \right) = ...\]
ashontae19
  • ashontae19
the second one equal 7i
ashontae19
  • ashontae19
lol i did all the work i jst want to see if im right
Michele_Laino
  • Michele_Laino
\[\Large \left( {2i} \right) \times \left( {5i} \right) = 2 \times 5 \times i \times i = 10{i^2} = ...\]
Michele_Laino
  • Michele_Laino
please compare my answers with yours
Michele_Laino
  • Michele_Laino
\[\Large \frac{{5i}}{{2i}} = \frac{5}{2}\]
ashontae19
  • ashontae19
ok thank you very much
Michele_Laino
  • Michele_Laino
\[\Large \left( {3 + 2i} \right) + \left( {15 - 8i} \right) = \left( {3 + 15} \right) + i\left( {2 - 8} \right) = 18 - 6i\]
Michele_Laino
  • Michele_Laino
\[\Large \left( {3 + 2i} \right) - \left( {15 - 8i} \right) = \left( {3 - 15} \right) + i\left( {2 + 8} \right) = - 12 + 10i\]
ashontae19
  • ashontae19
ok thank i was correct
Michele_Laino
  • Michele_Laino
\[\large \left( {3 + 2i} \right) - \left( {15 - 8i} \right) = \left( {3 - 15} \right) + i\left( {2 + 8} \right) = - 12 + 10i\]
ashontae19
  • ashontae19
i have to log off thank you so much for the help
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.