i use the formula, but don't understand it.... (sum of finite geometric series)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

i use the formula, but don't understand it.... (sum of finite geometric series)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1435876640907:dw|
do you mean how do you derive that to be the formula?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i mean how do I understand it....
Every formula I have previously used I understand why it works to calculate a certain thing....
but, this....
Ok well let me derive it for you and maybe you will understand it better... \[a_1,ra_1,r^2a_1,r^3a_1..., \text{ is a geometric sequence } \\a_2=ra_1 \\ a_3=r^2a_1 \\ \cdots \\ a_n=r^{n-1}a_1 \\ \ \\ \text{ geometric series is the sum of the terms of the geometric sequence }\] \[S_n=a_1+ra_1+r^2a_1+r^3a_1 \cdots +r^{n-1}a_1 \\S_n= a_1(1+r+r^2+r^3+ \cdots r^{n-1}) \\ \] ...
ok before I go on... do you know what we get when we do: \[\frac{r^n-1}{r-1}\]
when n->∞ ? or what do you mean?
examples: \[\frac{r^2-1}{r-1}=r+1 \\ \frac{r^3-1}{r-1}=r^2+r+1 \\ \frac{r^4-1}{r-1}=(r+1)(r^2+1)=r^3+r^2+r+1 \\ \frac{r^5-1}{r-1}=r^4+r^3+r^2+r+1\] so on...
basically the trick here to recognize \[r^{n-1}+r^{n-2}+r^{n-1}+ \cdots +r^{3}+r^2+r+1=\frac{r^n-1}{r-1}\]
oh, so you get r^(n-1)+r^(n-2)+....r^3+r^2+r+1
yeah
oops I didn't mean to write n-1 again
yes I see, no need correction
\[r^{n-1}+r^{n-2}+r^{n-\color{red}3}+ \cdots +r^{3}+r^2+r+1=\frac{r^n-1}{r-1}\]
ok I did it anyways :p
so, \(\LARGE \frac{r^{n}-1}{r-1}\) is just the sum of all these r^(n-1)+....+r+1 but these aren't terms, because the terms are when each of these is multiplying times a1, so..... a1 • r^(n-1) + a1 • r^(n-2) + .... a1•r+a1•1
\[S_n=a_1+ra_1+r^2a_1+r^3a_1 \cdots +r^{n-1}a_1 \\S_n= a_1(1+r+r^2+r^3+ \cdots r^{n-1}) \\ \\ S_n=a_1 \frac{r^n-1}{r-1} \\ \text{ or multiply both \top and bottom gives } S_n=a_1 \frac{1-r^n}{1-r}\]
the trick is to notice that if we let \(S_n\) denote the sum of \(n\) terms we get: $$S_n=a_1+a_1 r+a_1 r^2+\dots+a_1r^{n-1}\\r S_n=a_1 r+a_1 r^2+\dots+a_1r^{n-1}+a_1 r^n\\S_n-rS_n=a_1-a_1 r^n\\(1-r)S_n=a_1(1-r^n)\\S_n=a_1\frac{1-r^n}{1-r}$$
yes you are right so you can take that sum of the r things you wrote and multiply it by your initial
that's cute @oldrin.bataku
So, this is what we do: we take the (1-r^(n-1)) / (1-r) that = r^(n-1) + r^(n-2) + .... r + 1 and then so that we are going to be adding the terms, we multiply by the a1 component: And this way we get the formula that is there.
yep
tnx again, you got my back I will say I don't know jack. when compare to you at least, because you are a math beast.
You really saved me. "Filled in the gap"
np didn't do much :)
yeah you did. YOu kinda made my knowledge a whole piece. A quite small piece, but a whole one.... in any case.... cu, and ty very much

Not the answer you are looking for?

Search for more explanations.

Ask your own question