anonymous
  • anonymous
Find S20 for the geometric series 4 + 12 + 36 + 108 + … 5,034,043,187 5,123,498,245` 6,973,568,800 7,321,089,348
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
rishavraj
  • rishavraj
for geometric series \[S_n = a_1 \times (\frac{ 1 - r^n }{ 1 - r } )\]
anonymous
  • anonymous
so what does that mean
rishavraj
  • rishavraj
a_1 is first term i.e 4 r is common ratio i.e 3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

rishavraj
  • rishavraj
so for S_20 \[S_{20} = 4 \times \frac{ 1 - 3^{20} }{ 1 - 3 } \]
mathstudent55
  • mathstudent55
Find the common ratio, r, by dividing a term by its previous term. Then substitute 4 for a1, the value you find for r for r, and 20 for n in the formula @rishavraj gave you above.
anonymous
  • anonymous
thank you!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.