dix123
  • dix123
how to find solutions of a quadratic trinomial with a discriminant of 40.
Algebra
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

dix123
  • dix123
Plssssssss helppppppppppp
UnkleRhaukus
  • UnkleRhaukus
A general quadratic polynomial: \[ax^2+bx+c=0\] The discriminant \(\Delta\): \[\Delta= b^2-4ac\]
dix123
  • dix123
but how do you get the solutions if the discriminant is a positive number, but not a perfect square. I mean I know it has 2 irrational solutions how would you solve it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
the solutions are given from the quadratic formula \[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-b\pm\sqrt{\Delta}}{2a}\]
dix123
  • dix123
Thank you. That really helps
UnkleRhaukus
  • UnkleRhaukus
If you found the discriminant to be positive, +40: then then irrational roots will be \[x=\frac{-b\pm\sqrt{40}}{2a}\\ \quad=\frac{-b\pm2\sqrt{10}}{2a}\\\] \[x=\frac{-b+2\sqrt{10}}{2a},\quad \frac{-b-2\sqrt{10}}{2a}\\ \quad =\qquad\qquad\quad,\]
dix123
  • dix123
Thank you!!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.