anonymous
  • anonymous
What is a 3rd degree polynomial function like f(0)=18 and whose zeros are -1, 2 ,and 3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Your polynomial has the form: \[y=ax ^{3}+bx ^{2}+cx+d\] For f(0)=18 : your x=0 and y=18 \[y=a*0 ^{3}+b*0 ^{2}+c*0+d\] D=18 And the zeros are when your y=0 so , you have for x=-1 \[0=-a+b-c+d\] \[0=-a+b-c+18\] for x=2 \[0=8a+4b+2c+d\] \[0=8a+4b+2c+18\] for x=3 \[0=27a+9b+3c+d\] \[0=27a+9b+3c+18\] You need to solve this system of 3 equations to find a,b and c
anonymous
  • anonymous
you can do it with matrices or by elimination
anonymous
  • anonymous
thanks so much!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Try tipping those you help you out by pressing on that "Best Response" button to reward them a medal. Happy OpenStudying!
anonymous
  • anonymous
\(\Large\rm\color{darkviolet}{\sideset{_\star~^\star}{~~_\star~^\star}{_\star}\hspace{-56pt}\color{blueviolet}{\overset{^\star~~~_\star~~~_\star~~~^\star~~~_\star~~~^\star~~~^\star}{^\star~^\star~~~ \star~~~~_\star~\star~_\star~~~^\star}\hspace{-35pt}}\color{bluepurple}{\underset{^\star~~~^\star~~~\star~~~_\star~~~\star~~~^\star~~~_\star~~~}{\star}}}\hspace{96pt}\Large\rm\color{darkviolet}{\sideset{_\star~^\star}{~~~~~~^\star}{_\star}\hspace{-129pt}\color{blueviolet}{\overset{^\star~~~_\star~~~_\star~~~^\star~~~_\star~~~^\star~~~^\star}{^\star~^\star~~~ \star~^\star~~\star~~~_\star~~~^\star}\hspace{-159pt}}\color{bluepurple}{\underset{^\star~~~^\star~~~\star~~~_\star~~~\star~~~^\star~~~_\star~~~}{\star}}}\hspace{-165pt}\LARGE\rlap{\it\color{red}{W}\color{orange}{e}\color{gold}{l}\color{lime}{c}\color{blue}{o}\color{blueviolet}{m}\color{purple}{e}\color{orchid}{~t}\color{magenta}{o}\color{red}{~O}\color{orange}{p}\color{gold}{e}\color{lime}{n}\color{cyan}{S}\color{blue}{t}\color{blueviolet}{u}\color{purple}{d}\color{orchid}{y}\color{magenta}{!}}{\hspace{-1.5pt}\it\color{black}{Welcome~to~OpenStudy!}}\) \(\it\color{charcoal}{~~~~Please~be~sure~to~read~OpenStudy's~terms~listed~within~the~following~links:}\) \(~\hspace{1.5pt}\large\color{red}{_✧~}\huge\color{orange}{^✧~}\normalsize\color{gold}{✧~~}\Large\color{blue}{/)}\LARGE\color{blue}{_∧}\Large\color{blue}{/)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}\hspace{-3.5pt}\Large\color{blueviolet}{/)}\LARGE\color{blueviolet}{_∧}\Large\color{blueviolet}{/)~~~~}\hspace{-10pt}\large\color{gold}{^✧}\LARGE\color{orange}{_✧}\huge\color{yellow}{^✧}\)\(~~\Large\color{red}{~~_✧~~}\large\rm\color{blue}{O(}\Large\color{blue}{^}\color{blue}{_ヮ}\hspace{-2pt}\Large\color{blue}{^}\hspace{-2pt}\color{blue}{)o}\hspace{160pt}\Large\rm\color{blueviolet}{o(}\Large\hspace{-3pt}\color{blueviolet}{^}\color{blueviolet}{_ヮ}\hspace{-2pt}\Large\color{blueviolet}{^~}\hspace{-3pt}\large\color{blueviolet}{)O}\small\color{orange}{~_✧}\Large\color{gold}{~~^✧}\hspace{-235.7pt}\underset{\href{https:///openstudy.com/terms-and-conditions}{\hspace{0pt}\LARGE\it{\color{red}{\bigstar~T}}\color{orange}{e}\color{gold}{r}\color{lime}{m}\color{cyan}{s}\color{blue}{~a}\color{blueviolet}{n}\color{purple}{d}\color{orchid}{~C}\color{magenta}{o}\color{pink}{n}\color{red}{d}\color{orange}{i}\color{gold}{t}\color{lime}{i}\color{cyan}{o}\color{blue}{n}\color{blueviolet}{s}\color{red}{~\bigstar}}}{{\href{https:///openstudy.com/code-of-conduct}{\hspace{5.5pt}\large\it{\color{red}{\bigstar~C}}\color{orange}{o}\color{gold}{d}\color{lime}{e~}\color{cyan}{o}\color{blue}{f~}\color{blueviolet}{C}\color{purple}{o}\color{orchid}{n}\color{magenta}{d}\color{pink}{u}\color{red}{c}\color{orange}{t}\color{red}{~\bigstar}}}}\) \(~\small\color{red}{~~~~~~~~_✧~~~~}\hspace{0pt}\large\rm\color{blue}{O(")(")~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}\hspace{0pt}\large\rm\color{blueviolet}{(")(")O}\small\color{red}{~~~~~~✧}\) \(\Large\color{green}{~~~~~⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒}\)
ParthKohli
  • ParthKohli
Try this:\[f(x) = k(x+1)(x-2)(x-3)\]\[f(0) = k\cdot1 \cdot (-2) \cdot (-3) = 6k = 18 \Rightarrow k = 3\]So\[f(x) = 3(x+1)(x-2)(x-3)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.