anonymous
  • anonymous
For question 2K-4 (b) we're asked to find out all solutions for the two dimensional Laplace equation of the form w = ax^3+bx^2y + cxy^2 +dy^3. (Link- http://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/2.-partial-derivatives/part-a-functions-of-two-variables-tangent-approximation-and-optimization/problem-set-4/MIT18_02SC_SupProb2.pdf) After equating w(xx) +w(yy) = 0, I get x(3a+c)+y(3d+b)=0. How do I get all solutions from here?
MIT 18.02 Multivariable Calculus, Fall 2007
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

IrishBoy123
  • IrishBoy123
you can now write \(W(x,y) = ax^3+bx^2y + cxy^2 +dy^3\) as: \(W(x,y) = a \ x^3 - 3d \ x^2y - 3a \ xy^2 +d \ y^3 \), now knowing that this satisfies the Laplace Eqn, so: \(W(x,y) = a(x^3 - 3xy^2) + d(y^3 - 3x^2y)\) thus: \(W(x,y) = c_1(x^3 - 3xy^2) + c_2(y^3 - 3x^2y) = c_1.f_1(x,y) + c_2.f_2(x,y)\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.