anonymous
  • anonymous
If C(x) = 16000 + 500x − 3.2x^2 + 0.004x^3 is the cost function and p(x) = 2900 − 8x is the demand function, find the production level that will maximize profit. (Hint: If the profit is maximized, then the marginal revenue equals the marginal cost.) I have no idea hot to solve this, please help!
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
If C(x) = 16000 + 500x − 3.2x^2 + 0.004x^3 is the cost function and p(x) = 2900 − 8x is the demand function, find the production level that will maximize profit. (Hint: If the profit is maximized, then the marginal revenue equals the marginal cost.) I have no idea hot to solve this, please help!
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Jacob902
  • Jacob902
C(1000) = 16000 + 200(1000) + 4(1000^3/2) ...............= 16000 + 200000 + 126491 ........cost = 342491 AC = 342491 / 1000 = 342.50 MC(x) = C'(x) ..........= 200 + 8x^1/2 ..........= 200 + 8(31.62) ..........= 453 ii. graph the average cost function (AC) and the marginal cost function (MC) AC = [(16000 + 200x + 4x^(3/2)] / x MC = C' = 200 + 8x^(1/2) find the x value at the intersection. x = 252 parts iii. minimum average cost (c) would be the y value at the intersection. c = $327 2. First you find the revenue function R(x) R(x) = x*p(x) = x(1700 - 7x) R(x) = 1700x - 7x^2 max profit occurs when R'(x) = C'(x) R'(x) = 1700 - 14x.....C'(x) = 500 - 3.2x + .012x^2 1700 - 14x = 500 - 3.2x + .012x^2 0 = .012x^2 + 10.8x - 1200 graphing this equation will give x = 100 when y = 0 so 100 is the production level.
anonymous
  • anonymous
so 100 would be my answer? @Jacob902 i typed that in and it was wrong...
Jacob902
  • Jacob902
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=https%3A%2F%2Fanswers.yahoo.com%2Fquestion%2Findex%3Fqid%3D20090216152002AAwga1m&ei=BYaYVYDoC4S9ggSt5oL4AQ&usg=AFQjCNFwae_kN8dJuIdk-84SVucrnKT6EA&bvm=bv.96952980,d.eXY

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh okay

Looking for something else?

Not the answer you are looking for? Search for more explanations.