anonymous
  • anonymous
Which of the following expressions are equivalent? Justify your reasoning. 4√x3 1 x−1 10√x5•x4•x2 x 1 3 •x 1 3 •x 1 3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
DecentNabeel
  • DecentNabeel
which expression
anonymous
  • anonymous
So the options are A. \[\sqrt[4]{x^3}\] B. \[\frac{ 1 }{ x^-1}\] C.\[\sqrt[10]{x^5*x^4*x^2}\] D.\[x^{1/3}\] * \[x^{1/3}\] * \[x^{1/3}\]
anonymous
  • anonymous
@DecentNabeel hey can you help me out?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DecentNabeel
  • DecentNabeel
ok these are option so what is the expression
anonymous
  • anonymous
there is none, they're only asking which are equivalent
anonymous
  • anonymous
so out of all the options, which ones equal the same thing
anonymous
  • anonymous
hello does anyone want to help
rishavraj
  • rishavraj
option B .....is it \[\frac{ 1 }{ x^{-1} }~~~or~~~ \frac{ 1 }{ x - 1 }\]
rishavraj
  • rishavraj
see if Option B is \[\frac{ 1 }{ x^{-1} }\] then u must be knowing tht \[\frac{ 1 }{ x^{-1} } = x^1 = x\] and see option D i.e \[x^{\frac{ 1 }{ 3 }} \times x^{\frac{ 1 }{ 3 }} \times x^{\frac{ 1 }{ 3 }} ~~=~~ x^{\frac{ 1 }{ 3 } + \frac{ 1 }{ 3 } + \frac{ 1 }{ 3 }} = x^\frac{ 3 }{ 3 } = x\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.