anonymous
  • anonymous
two object arre connected vertically by ligth string. the string connecting 4 kg object (upper) and 5 kg (lower) a) determine the tension in the upper object T1 and lower object T2. if the system is equilibrium.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1436069038362:dw|
Michele_Laino
  • Michele_Laino
since our system is at equilibrium, we can apply the first law of mechanics. The external forces acting on each object are like below: |dw:1436076149316:dw|
Michele_Laino
  • Michele_Laino
so the subsequent vector equations hold: \[\Large \left\{ \begin{gathered} {M_1}{\mathbf{g}} + {{\mathbf{T}}_{\mathbf{1}}} - {{\mathbf{T}}_2} = {\mathbf{0}} \hfill \\ \hfill \\ {M_2}{\mathbf{g}} + {{\mathbf{T}}_{\mathbf{2}}} = {\mathbf{0}} \hfill \\ \end{gathered} \right.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
Now using the reference system in my drawing, namely the z-axis, we get the subsequent scalars equations: \[\Large \left\{ \begin{gathered} - {M_1}g + {T_1} - {T_2} = 0 \hfill \\ \hfill \\ {M_2}g + {T_2} = 0 \hfill \\ \end{gathered} \right.\] Please solve that algebraic system for the tensions T_1 and T_2
Michele_Laino
  • Michele_Laino
scalar*
anonymous
  • anonymous
thank you so much!!!
Michele_Laino
  • Michele_Laino
Sorry I have made an error of sign, here is the right system: \[\Large \left\{ \begin{gathered} - {M_1}g + {T_1} - {T_2} = 0 \hfill \\ \hfill \\ - {M_2}g + {T_2} = 0 \hfill \\ \end{gathered} \right.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.