anonymous
  • anonymous
What is the standard form of the equation of a circle with its center at (2, -3) and passing through the point (-2, 0)? (x − 2)2 + (y + 3)2 = 5 (x + 2)2 + (y − 3)2 = 25 (x − 2)2 + (y + 3)2 = 25 (x − 2)2 − (y + 3)2 = 5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
For future reference, posting the same question right after can be considered spam. And again; There are two steps to this problem. First is to find the radius, and the second is to write out the standard form. You can find the radius by finding the distance between the center and the point the circle passes through. For that, you use the distance formula: \[\large d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\] Then put it in standard form: \[\large (x-h)^{2}~+~(y-k)^{2}=r^{2}\] \[\large (h,k)~=~Center~coordinates~of~circle\] \[\large r~=~radius\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.