anonymous
  • anonymous
The diagram shows the aerial view of a park. What is the length of the park's boundary to the nearest yard? Use the value π = 3.14. 215 yards 266 yards 285 yards 309 yardshttp://cdn.ple.platoweb.com/PCAP-ASSETS-PROD/6ba968e838ff470d8f9f18b417492d85
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
assuming that the limits are the perimeter of this park: |dw:1436148213050:dw| and for the left and right \[L=\theta*R\] theta is in rad \[\frac{ 120 \pi }{ 180 } = \frac{ 2 \pi }{ 3 }\] \[L= \frac{ 2 \pi }{ 3 }*50=104.7\] calculating the perimeter: \[2*50+2*104.7=309.4\] I think that the answer is 309
mathstudent55
  • mathstudent55
@baad1994 You are correct. You can also use the formula \(s = \dfrac{x}{360^o} \times 2 \pi r\) for the length of an arc and avoid having to convert to radians. \(P = 2 \times \left( \dfrac{120}{360}\times 2 \pi \times 50 ~yd \right) + 2 \times 50~yd = 309 ~yd\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.