anonymous
  • anonymous
Help me solve this question please.. Given cosh x = square root 3, find value of cosh 2x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
By definition of hyperbolic cosine, \[\cosh x=\sqrt3~~\implies~~\frac{e^x+e^{-x}}{2}=\sqrt3~~\implies~~e^{2x}-2\sqrt3e^x+1=0\] which, if we let \(t=e^x\), has roots \[t=\frac{2\sqrt3\pm\sqrt{8}}{2}~~\iff~~x=\ln\frac{2\sqrt3\pm\sqrt8}{2}=\ln(\sqrt3\pm\sqrt2)\] So, knowing this, you can easily determine \(\cosh2x\).
anonymous
  • anonymous
The answer i got is 4.897, is it correct?
anonymous
  • anonymous
The answer i got is 4.897, is it correct?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Sorry, not cosh 2x, but sinh 2x
anonymous
  • anonymous
Sorry, not cosh 2x, but sinh 2x
anonymous
  • anonymous
Determining \(\sinh2x\) isn't so far off from finding \(\cosh2x\). Just use the definitions: \[\cosh x=\frac{e^x+e^{-x}}{2}\quad\quad\quad\sinh x=\frac{e^x-e^{-x}}{2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.