Given that D is equidistant to G and F, find m

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Given that D is equidistant to G and F, find m

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

since the point D is equidistant from G and F, then the line ED is the bisector of the angle GEF, then we can write this: \[\Large 2x + 20 = 5x - 10\] please solve for x

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

subtractin 2x from both sides, we get: \[\Large \begin{gathered} 2x + 20 - 2x = 5x - 10 - 2x \hfill \\ \hfill \\ 20 = 3x - 10 \hfill \\ \end{gathered} \] then adding 10 to both sides we get: \[\Large \begin{gathered} 20 + 10 = 3x + 10 - 10 \hfill \\ \hfill \\ 30 = 3x \hfill \\ \end{gathered} \] now divide both sides by 3, what do you get?
subtracting*
so 10?
ok! we have x=10 so the measure of the angle GED, is: (2*x+20)+(5*x-10)=(2*10+20)+(5*10-10)=...?
that's a lot of numbers I don't have much time I have like 17 left and a time limit!!
hint: \[\begin{gathered} \left( {2x + 20} \right) + \left( {5x - 10} \right) = \left( {2 \times 10 + 20} \right) + \left( {5 \times 10 - 10} \right) = ...? \hfill \\ = \left( {20 + 20} \right) + \left( {50 - 10} \right) = 40 + 40 = ...? \hfill \\ \end{gathered} \]
sorry, the angle GEF is 80 degrees, the measure of the angle GED is: \[2x + 20 = 2 \times 10 + 20 = ...?\]
\[2x + 20 = 2 \times 10 + 20 = 20 + 20 = ...?\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question