anonymous
  • anonymous
What is the simplified form of the quantity of x plus 7, all over the quantity of x plus 3 + the quantity of x minus 4, all over 3?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1436202319724:dw|
anonymous
  • anonymous
@ganeshie8 @geerky42 @Michele_Laino
Michele_Laino
  • Michele_Laino
hint: the least common multiple between x+3 and 3 is: \[3\left( {x + 3} \right)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
am I right?
anonymous
  • anonymous
would it be x2++3x-28/3(x+3)
anonymous
  • anonymous
Yes you are:)
Michele_Laino
  • Michele_Laino
so we can write this: \[\Large \begin{gathered} \frac{{x + 7}}{{x + 3}} + \frac{{x - 4}}{3} = \hfill \\ \hfill \\ = \frac{{3\left( {x + 7} \right) + \left( {x + 3} \right)\left( {x - 4} \right)}}{{3\left( {x + 3} \right)}} = ... \hfill \\ \end{gathered} \] please continue
anonymous
  • anonymous
(x+7)(x+3)(x-4)/3(X+3)
Michele_Laino
  • Michele_Laino
not exactly, since you have to compute the multiplications first
anonymous
  • anonymous
hOW do I do that?
Michele_Laino
  • Michele_Laino
hint:
Michele_Laino
  • Michele_Laino
\[3\left( {x + 7} \right) = 3x + 3 \times 7 = 3x + 21\]
anonymous
  • anonymous
3(x+7)
anonymous
  • anonymous
I'm sorry :(
Michele_Laino
  • Michele_Laino
\[\Large \left( {x + 3} \right)\left( {x - 4} \right) = x \cdot x - 4x + 3x - 4 \cdot 3 = ...\] here, I have applied the foil procedure
Michele_Laino
  • Michele_Laino
please simplify, what do you get?
anonymous
  • anonymous
x^2-1x-12
Michele_Laino
  • Michele_Laino
ok!
Michele_Laino
  • Michele_Laino
so the numerator is: \[\Large 3x + 21 + {x^2} - x - 12 = ...\]
anonymous
  • anonymous
2x+x^2+9
Michele_Laino
  • Michele_Laino
perfect! so your expression becomes: \[\Large \frac{{x + 7}}{{x + 3}} + \frac{{x - 4}}{3} = \frac{{{x^2} + 2x + 9}}{{3\left( {x + 3} \right)}}\]
anonymous
  • anonymous
ohhh! Thank-you! I need one more please?
Michele_Laino
  • Michele_Laino
ok!
anonymous
  • anonymous
What is the simplified form of the quantity of x plus 9, all over the quantity of 2x plus 3 + the quantity of x plus 4, all over the quantity of x plus 2?
Michele_Laino
  • Michele_Laino
please, make a drawing of your expression
anonymous
  • anonymous
ok hold on
Michele_Laino
  • Michele_Laino
here the least common multiple is: \[\left( {2x + 3} \right)\left( {x + 2} \right)\]
Michele_Laino
  • Michele_Laino
is it right?
anonymous
  • anonymous
Yes
anonymous
  • anonymous
Now what?
Michele_Laino
  • Michele_Laino
ok! So we can write: \[\large \frac{{x + 9}}{{2x + 3}} + \frac{{x + 4}}{{x + 2}} = \frac{{\left( {x + 9} \right)\left( {x + 2} \right) + \left( {x + 4} \right)\left( {2x + 3} \right)}}{{\left( {2x + 3} \right)\left( {x + 2} \right)}}\]
Michele_Laino
  • Michele_Laino
now you have to apply the foil method in order to evaluate this: \[\Large \left( {x + 9} \right)\left( {x + 2} \right) = ...?\]
Michele_Laino
  • Michele_Laino
please continue
anonymous
  • anonymous
x2+11x+18
Michele_Laino
  • Michele_Laino
ok! Now do the same with this expression: \[\Large {\left( {x + 4} \right)\left( {2x + 3} \right)}\]
anonymous
  • anonymous
2x2+11x+12
Michele_Laino
  • Michele_Laino
ok! so the numerator is: \[\Large {x^2} + 11x + 18 + 2{x^2} + 11x + 12 = ...\]
anonymous
  • anonymous
2x3+22x+30
Michele_Laino
  • Michele_Laino
are you sure?
anonymous
  • anonymous
yes. wait no
anonymous
  • anonymous
2x4+22x+30
Michele_Laino
  • Michele_Laino
I got: 3 x^2+...
Michele_Laino
  • Michele_Laino
\[\Large {3{x^2} + 22x + 30}\]
Michele_Laino
  • Michele_Laino
is it right?
anonymous
  • anonymous
yes bcuz 1x2+2x2=3x2. I forgot about the imaginary 1
Michele_Laino
  • Michele_Laino
ok! So your original expression, becomes: \[\Large \frac{{x + 9}}{{2x + 3}} + \frac{{x + 4}}{{x + 2}} = \frac{{3{x^2} + 22x + 30}}{{\left( {2x + 3} \right)\left( {x + 2} \right)}}\]
anonymous
  • anonymous
That's not an answer choice, so I guess we will have to foil the bottom also
Michele_Laino
  • Michele_Laino
ok! then what is: \[\Large \left( {2x + 3} \right)\left( {x + 2} \right) = ...?\]
anonymous
  • anonymous
2x2+7x+6
Michele_Laino
  • Michele_Laino
so we get: \[\Large \frac{{x + 9}}{{2x + 3}} + \frac{{x + 4}}{{x + 2}} = \frac{{3{x^2} + 22x + 30}}{{2{x^2} + 7x + 6}}\]
Michele_Laino
  • Michele_Laino
yes! that's right!
anonymous
  • anonymous
Yay! Ok so I want you to keep helping me, and give u medals, so i AM going to close the question and ask another ok?
Michele_Laino
  • Michele_Laino
I'm sorry, I have to go to dinner :(
anonymous
  • anonymous
:( Ok well thanks anyways!
Michele_Laino
  • Michele_Laino
thanks! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.