According to Descartes' rule of signs, how many possible negative real roots could the following polynomial function have?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

According to Descartes' rule of signs, how many possible negative real roots could the following polynomial function have?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I think the answer is 2 or 0
look at our function as \(x\to-\infty \); this is made easier by substituting \(x\to -x\) to get \(f(-x)=3x^4+5x^3+5x^2-5x+2\). for small \(x\), note that first \(2\) will dominate and we will begin above the \(x\) axis. then as \(x\) grows, \(-5x\) will dominate and could potentially drive our function below the \(x\) axis -- this would necessitate the existence of a root.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

then as x continues to grow \(5x^2\) comes to dominate, which might drive our function back above the \(x\) axis and could potentially result in another root if our function was driven below the \(x\) axis by the \(-5x\) term -- or, in the case \(-5x\) failed to pull our function below the \(x\) axis, then neither root would exist. the rest of our terms as they dominate will only further pull our function higher and higher and risk no chance of introducing any new roots
so we have two possibilities for such negative real roots \(-x\): either \(-5x\) was sufficiently 'strong' when it came to dominate that it drove our function below the \(x\)-axis only for the subsequent terms to eventually dominate and drive our function back above the \(x\)-axis to yield two such roots, or it failed to drive it below the \(x\)-axis at all and we have zero such roots
this is Descartes' rule of signs explained intuitively -- we can count the number of possible 'crossings' of the \(x\)-axis each time a term of opposite sign comes to dominate; here, we have \(2 \to -5x\) represent a possible crossing, followed by \(-5x\to 5x^2\) representing another

Not the answer you are looking for?

Search for more explanations.

Ask your own question