anonymous
  • anonymous
Consider the following scenario: • Let P(C) = 0.2 • Let P(D) = 0.3 • Let P(C | D) = 0.4 Find P(D | C) Find P(C AND D).
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
First you want to find C and D, which is the same as D and C
anonymous
  • anonymous
\[ \Pr(C|D ) = \frac{\Pr(\underbrace{C\cap D}_{C\text{ and } D})}{\Pr(D)} \]
anonymous
  • anonymous
This equation gets manipulated into: \[ \Pr(C|D)\cdot \Pr(D) = \Pr(C\cap D) \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
wait so "|" is the same as saying "and?"
anonymous
  • anonymous
No, \[ \Pr(\underbrace{C|D}_{C\text{ if/given }D}) \]
anonymous
  • anonymous
oh okay right
anonymous
  • anonymous
so it would be 0.12?
triciaal
  • triciaal
|dw:1436240223932:dw|
triciaal
  • triciaal
|dw:1436240600971:dw|
anonymous
  • anonymous
Yes, \(0.12\) works for C and D
anonymous
  • anonymous
Divide that by \(\Pr(C)\) to get \(\Pr(D|C)\).
misty1212
  • misty1212
\[P(C|D)=\frac{P(C\cap D)}{P(D)}=\frac{P(C\cap D)}{.3}=.4\to P(C\cap D)=03\times .4=.12\]
misty1212
  • misty1212
then \[P(D|C)=\frac{P(C\cap D)}{P(C)}=\frac{.12}{.2}\]
anonymous
  • anonymous
oh cool makes sense thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.