anonymous
  • anonymous
Consider the region under the curve y = 1/x, above the x axis, on the intervalbum 1 <= x < infinity. Calculate the volume of the solid obtained by revolving the region about the x axis.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Astrophysics
  • Astrophysics
@ganeshie8
Astrophysics
  • Astrophysics
|dw:1436287913646:dw|
Astrophysics
  • Astrophysics
\[V = \int\limits_{a}^{b} A(x) dx~~~~~~\text{where} ~ A(x) = \pi r ^2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Astrophysics
  • Astrophysics
So I guess you can use the disk method, but it's been a while since I've done such problems, the radius for disk is f(x)
Astrophysics
  • Astrophysics
So \[V = \int\limits_{a}^{b} \pi f(x)^2 dx\]
Astrophysics
  • Astrophysics
Now just plug in the intervals and values and you're good to go!
anonymous
  • anonymous
Can you show me
Astrophysics
  • Astrophysics
\[V = \int\limits_{1}^{\infty} \pi \left( \frac{ 1 }{ x } \right)^2 dx\]
Astrophysics
  • Astrophysics
Go ahead and try to integrate now
anonymous
  • anonymous
the answer is 1.

Looking for something else?

Not the answer you are looking for? Search for more explanations.