Help in Algebra 1 Screenshot Below!!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help in Algebra 1 Screenshot Below!!

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@Owlcoffee :D :D:D can u help?
On the first part you are asked to use the discriminant to describe the solutions of the quadratic equation. As you might know, a quadratic equation can be solved using the general formula or "bhaskara's formula": \[x=\frac{ -b \pm \sqrt{b^2-4ac} }{ 2a }\] But this formula has a part we call "discriminant" and as you might have guessed, it is everything inside the radical, the discriminant is often notated with the capital greek letter "delta"; \[\Delta = b^2 - 4ac\] The discriminant gives away the behavior of the solution of a quadratic equation, therefore, there are 3 possible scenarios: \[1) \Delta >0\] If the discriminant is greater than zero, meaning, a positive number, the quadratic equation will have two solutions x1, x2. \[2) \Delta =0 \] If the discriminant is equal to zero, then the quadratic equation will have one solution and graphically means that the parabola formed is tangent to the x-axis. \[3) \Delta <0\] if the discriminant is negative, the quadratic equation will have no real solutions and graphically means that the parabola formed does not cut the x-axis.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

ahhh that makes sense :D so what would B and C be then?
Well, you can use the general formula to solve one, and use factoriation to solve the other.
ok :D Thanks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question