AmTran_Bus
  • AmTran_Bus
Is this easy derivative question correct?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AmTran_Bus
  • AmTran_Bus
AmTran_Bus
  • AmTran_Bus
You don't have to walk me through, I know I need to be doing the work, but I would sure appreciate it if you would tell me if it is wrong so I can re do it.
AmTran_Bus
  • AmTran_Bus
@welshfella

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

AmTran_Bus
  • AmTran_Bus
Anyone have an idea? I can post the formula
AmTran_Bus
  • AmTran_Bus
Gotta love Patrick JMT on youtube
zepdrix
  • zepdrix
um um um
AmTran_Bus
  • AmTran_Bus
lol yes zepdrix? :)
zepdrix
  • zepdrix
\[\Large\rm f(x)=2+x^2+\tan\left(\frac{\pi}{2}x\right)\]So we want to evaluate this at the inverse functions x=2, which will correspond to the original functions y=2, ya? \[\Large\rm 2=2+x^2+\tan\left(\frac{\pi}{2}x\right)\]So uhhh.. it looks like this is leading to an x value of x=0.
zepdrix
  • zepdrix
So then uhhhhh.. ya our formula stuff.
AmTran_Bus
  • AmTran_Bus
Maybe so, looks good?
zepdrix
  • zepdrix
Ooo ya I made a boo boo somewhere :P Cause f(0) is = 2. So we would end up with 1/2. Woops. Not an option. Thinkingggg +_+
AmTran_Bus
  • AmTran_Bus
Its alright I understand this problem is a doozy
zepdrix
  • zepdrix
Oh oh oh, I'm being silly.. it's not f(0) in the bottom it's f'(0)
zepdrix
  • zepdrix
ya ya ya, that should fix things up :) find your derivative before plugging 0 in
zepdrix
  • zepdrix
\[\Large\rm (f^{-1})(2)=\frac{1}{f'(\color{orangered}{f^{-1}(2)})}\] \[\Large\rm (f^{-1})(2)=\frac{1}{f'(\color{orangered}{0})}\]
AmTran_Bus
  • AmTran_Bus
Eek whats the d dx?
zepdrix
  • zepdrix
Umm I guess it would be \[\Large\rm f(x)=0+2x+\sec^2\left(\frac{\pi}{2}x\right)\cdot\frac{\pi}{2}\]I applied chain rule on that last term.
AmTran_Bus
  • AmTran_Bus
Ok so Im right then?
zepdrix
  • zepdrix
oh with the blue dot? ahhh yes, looks correct!! :)
AmTran_Bus
  • AmTran_Bus
THANK YOU!!!! WHooo hoooo!!!!
zepdrix
  • zepdrix
yay team \c:/

Looking for something else?

Not the answer you are looking for? Search for more explanations.