differentiate y=(Inx)^squart root x Do not simplify answer

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

differentiate y=(Inx)^squart root x Do not simplify answer

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[y=(\ln x)^{\sqrt{x}}\]
Hey Jess :) We can uhhh.. use logs I suppose, that should help
So umm.. ya ya let's try that. Let's take the natural log of each side.\[\large\rm \ln y= \ln\left[(\ln x)^{\sqrt x}\right]\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Now we can apply our log rule to rewrite the right side,\[\large\rm \ln y=\sqrt{x} ~\ln\left[(\ln x)\right]\]And from there you'll apply product rule :) It's gonna get messy! Confused by any of that? :o
im somewhat getting it
So let's first `set up` our derivative so we understand how it's going to look.\[\large\rm \color{royalblue}{(\ln y)'}=\color{royalblue}{(\sqrt x)'}\ln(\ln x)+\sqrt x\color{royalblue}{\left[\ln(\ln x)\right]'}\]The blue stuff is what we need to differentiate.
Product rule on the right, ya?
Too much? :O Brain esplode?
no im still here
So then uhhh take some derivatives :) remember derivative of \(\large\rm \sqrt{x}\) ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question