anonymous
  • anonymous
Two small insulating spheres with radius 5.00×10−2 m are separated by a large center-to-center distance of 0.600 m . One sphere is negatively charged, with net charge -2.10 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) .
Physics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Michele_Laino
  • Michele_Laino
hint: here is the situation of your problem: |dw:1436365695363:dw|
Michele_Laino
  • Michele_Laino
where \[\begin{gathered} {Q_1} = 3.70 \times {10^{ - 6}}coulombs \hfill \\ {Q_2} = - 2.10 \times {10^{ - 6}}coulombs \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
now the total electric field at midpoint M, is given by the subsequent vector sum: \[\large {\mathbf{E}}\left( M \right) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q_1}}}{{{{\left( {d/2} \right)}^2}}}{\mathbf{\hat x}} + \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q_2}}}{{{{\left( {d/2} \right)}^2}}}{\mathbf{\hat x}}\] |dw:1436367402248:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
oops.. the total electric field at midpoint M is: \[\large {\mathbf{E}}\left( M \right) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q_1}}}{{{{\left( {d/2} \right)}^2}}}{\mathbf{\hat x}} - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q_2}}}{{{{\left( {d/2} \right)}^2}}}{\mathbf{\hat x}}\]
Michele_Laino
  • Michele_Laino
and the requested magnitude is: \[\large E\left( M \right) = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q_1}}}{{{{\left( {d/2} \right)}^2}}} - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q_2}}}{{{{\left( {d/2} \right)}^2}}}\]
Michele_Laino
  • Michele_Laino
where you have to substitute these quantities: \[\Large \begin{gathered} {Q_1} = 3.70 \times {10^{ - 6}} \hfill \\ {Q_2} = - 2.10 \times {10^{ - 6}} \hfill \\ \end{gathered} \]
anonymous
  • anonymous
Yes, it's usually safer to compute each E before adding them. the r = d/2 happens to be the situation here ... it does NOT mean "radius = diameter/2 " <= NO!

Looking for something else?

Not the answer you are looking for? Search for more explanations.