anonymous
  • anonymous
Evaluate the following expression. 2^-3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UsukiDoll
  • UsukiDoll
hey! Long time no see ! :D
anonymous
  • anonymous
Hi!
UsukiDoll
  • UsukiDoll
so we are given the problem \[\LARGE 2^{-3} \] negative exponents aren't allowed, so we have to take the reciprocal. A negative exponent just means that the base is on the wrong side of the fraction line, so you need to flip the base to the other side. For example \[ \LARGE x^{-2} \rightarrow \frac{1}{x^2} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UsukiDoll
  • UsukiDoll
so we need to flip \[\LARGE 2^{-3} \] and that becomes ..?
anonymous
  • anonymous
-3 over 2?
UsukiDoll
  • UsukiDoll
not exactly... remember our example \[\LARGE x^{-2} \rightarrow \frac{1}{x^2} \] so let x =2 and replace the -2 with -3
UsukiDoll
  • UsukiDoll
A negative exponent is equivalent to the inverse of the same number with a positive exponent
UsukiDoll
  • UsukiDoll
example \[\LARGE x^{-4} \rightarrow \frac{1}{x^4} \]
anonymous
  • anonymous
Oh okay I got it!
UsukiDoll
  • UsukiDoll
so let's try to apply the example to \[\LARGE 2^{-3} \]
UsukiDoll
  • UsukiDoll
so instead of \[\LARGE 2^{-3} \] we have \[\LARGE 2^{-3} \rightarrow \frac{1}{?} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.