amoodarya
  • amoodarya
I want to make short tutorial for parametric equation (not advanced )
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amoodarya
  • amoodarya
In mathematics, parametric equations of a curve express the coordinates of the points of the curve as functions of a variable, called a parameter for example : x=t+1 y=t-2 is a line equation if we want to find explicit equation first we find "t" from x or y and put it to other t=x-1 y=(t)-2=(x-1)-2 so y=x-3
Kash_TheSmartGuy
  • Kash_TheSmartGuy
Cool, so make a tutorial!
amoodarya
  • amoodarya
example 2: find explicit equation \[x=t-1\\y=t^2+t+2\\ \rightarrow x=t-1 \rightarrow \\t=x+1\\ \rightarrow y=(x+1)^2+(x+1)+2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amoodarya
  • amoodarya
example 3:find explicit equation x=sint +1 y= cos t -2 we know \[\sin^2t+\cos^2t=1\] so \[x=sint +1\rightarrow sint =x-1\\y=cost-2\rightarrow \cot =y+2\\sin^2t+\cos^2t=1\\(x-1)^2+(y+2)^2=1\\\] it is a circle
amoodarya
  • amoodarya
example 4:find explicit equation \[x=\sqrt{t}\\y=2t-1\\\] note that \[t \geq 0\] \[x=\sqrt{t} \rightarrow t=x^2\\y=2t-1\\ \rightarrow y=2(x^2)-1\]
amoodarya
  • amoodarya
example 5:\[x=2cost \\y=3sint \\\]find explicit equation \[x=2cost \rightarrow cost =\frac{x}{2}\\y=3sint \rightarrow sint=\frac{y}{3}\\we-know \\sin^2t+\cos^2t=1\\so\\(\frac{x}{2})^2+(\frac{y}{3})^2=1\\\frac{x^2}{4}+\frac{y^2}{9}=1\] it is an ellipse
amoodarya
  • amoodarya
example 6: x=cost +sint y=3 sint find explicit equation \[x=cost +sint\\ y=3 sint \rightarrow sint =\frac{y}{3} \\ \rightarrow x=cost +sint =cost +\frac{y}{3} \\x-\frac{y}{3} =cost \\put -into \\sin^2t+\cos^2t=1\rightarrow \\(\frac{y}{3})^2+(x-\frac{y}{3})^2=1\]
amoodarya
  • amoodarya
example 7: x=cost +sint y=cost -sint find explicit equation \[x=cost +sint \\ y=cost -sint \\ \rightarrow \\x^2=\cos^2t+\sin^2t+2sint cost\\y^2=\cos^2t+\sin^2t-2sint cost\] if we find sum of them it will be a circle \[x^2=\cos^2t+\sin^2t+2sint cost \rightarrow x^2=1+2sint cost\\y^2=\cos^2t+\sin^2t-2sint cost \rightarrow y^2=x^2=1-2sint cost\\ \rightarrow \\x^2+y^2=1+2sint cost+1-2sint cost=2 \\ \rightarrow x^2+y^2=2\] \[radius=\sqrt{2} ,center=(0,0)\]
amoodarya
  • amoodarya
example 8 : x=cost y=cos (2t) find explicit equation note : you have to find a relation between cos t, cos 2t \[x=\cos t\\y=\cos2t\\ \left\{ \cos2t=2\cos^2t-1 \right\}\rightarrow \\y=\cos2t=2\cos^2t-1 \\y=2x^2-1\]
amoodarya
  • amoodarya
example 9: \[x=t+\frac{1}{t}\\y=t-\frac{1}{t}\] find explicit equation 2 method will show first use \[(a+b)^2+(a-b)^2=2(a^2+b^2)\\(a+b)^2-(a-b)^2=4ab\] \[x=t+\frac{1}{t} \rightarrow x^2=t^2+(\frac{1}{t})^2+2t \frac{1}{t}=t^2+(\frac{1}{t})^2+2\\y=t-\frac{1}{t} \rightarrow y^2=t^2+(\frac{1}{t})^2-2t \frac{1}{t}=t^2+(\frac{1}{t})^2-2\\find \\x^2-y^2\\x^2-y^2=(t^2+(\frac{1}{t})^2+2)-(t^2+(\frac{1}{t})^2-2)\\ \rightarrow x^2-y^2=4\]
amoodarya
  • amoodarya
second method : it easy to find "t" \[x=t+\frac{1}{t}\\y=t-\frac{1}{t}\\x+y=t+\frac{1}{t}+t-\frac{1}{t}=2t\\t=\frac{x+y}{2}\] then put t in 1st or 2nd equation
amoodarya
  • amoodarya
example 10: \[x=2tant+3 \\y=3\cot t -5\\\] find explicit equation we have tan , cot and we know tan t * cot t=1 so \[x=2tant+3 \rightarrow \tan t=\frac{x-3}{2}\\y=3\cot t -5 \rightarrow \cot t =\frac{y+5}{3}\\ \rightarrow \tan t \times \cot t=1\\\frac{x-3}{2} \times \frac{y+5}{3}=1\\y+5=\frac{6}{x-3}\\y=\frac{6}{x-3}+5=\frac{6+5x-15}{x-3}=\frac{5x-9}{x-3}\]
amoodarya
  • amoodarya
example 11: \[x=a_0+b_0t\\y=a_1+b_1t\] find explicit equation it is a line equation :
amoodarya
  • amoodarya
\[if \\b_0 \neq 0 \\t=\frac{x-a_0}{b_0} \\ \rightarrow y=a_1+b_1t\\y=a_1 +b_1(\frac{x-a_0}{b_0})\]
amoodarya
  • amoodarya
Now draw parametric curve if we do not eliminate the parameter we can put some value for parameter and find x, y as a point of (x,y) then with some point draw the curve for example \[x=\frac{t}{2}\\y=t+1\\t=0 \rightarrow x=0 ,y=1 \rightarrow (x,y)=(0,1)\\t=2 \rightarrow x=1 ,y=3 \rightarrow (x,y)=(2,3)\\...\\\] they are polynomial in degree 1 : so this is a line equation |dw:1436394739768:dw|
amoodarya
  • amoodarya
we need to draw \[x=\sqrt{t}\\y=t+1\] put some t into x,y equations \[x=\sqrt{t}\\y=t+1\\t \ge 0\\t=0 \rightarrow x=0 , y=1 \rightarrow point=(0,1)\\t=1 \rightarrow x=1 , y=2 \rightarrow point=(1,2)\\t=4 \rightarrow x=2 , y=5 \rightarrow point=(2,5)\\t=9 \rightarrow x=3 , y=10 \rightarrow point=(3,10)\] |dw:1436395050876:dw| note that \[t \geq 0 \rightarrow x \geq 0\]
amoodarya
  • amoodarya
Now : Parametric derivative Parametric derivative is a derivative in calculus that is taken when both the x and y variables (traditionally independent and dependent, respectively) depend on an independent third variable t, usually thought of as "time". for example : \[x=2t+cost\\y=t^2+sint+5\\\frac{dy}{dx}=?\] \[\frac{dy}{dx}=\frac{dy}{dt}*\frac{dt}{dx}=\\\frac{dy}{dt}*\frac{1}{\frac{dx}{dt}}=\\\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{y'_t}{x'_t}\\\] so ,in this case \[y'_x=\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{(t^2+sint+5)'_t}{(2t+cost)'_t}=\frac{2t+cost}{2-sint}\]
amoodarya
  • amoodarya
@mukushla
amoodarya
  • amoodarya
@Donya2222 @dolloway97 @Donblue @Mehek14 @Mindblast3r @Marcorie @Moe95 @JFraser @superhelp101 @slade @sammixboo @Destinyyyy @Deeezzzz @Nicoleegilmoree @aaronq @AeroSmith @AG23 @Elsa213 @wil476003 @Rubyblades @razor99 @raggedy_roo @ritesh_asu @Rubyblades @Tinkerbell2001 @bruno102 @bunny256 @vera_ewing @Vocaloid @KAKES1967 @Hero @hendersonjen02 @iloveyou;* @IrishBoy123
amoodarya
  • amoodarya
we are in ,to help you
Empty
  • Empty
I was wondering if you've heard of the Leminscate curve: \[(x^2+y^2)^2=2a^2(x^2-y^2)\] Can we parametrize this?
amoodarya
  • amoodarya
a simple Leminscate curve: \[x=\frac{a \cos t}{1+\sin^2t}\\y=\frac{asint \cos t }{1+\sin^2 t}\]
amoodarya
  • amoodarya
Leminscate curve equation is nice in polar coordinate "Empty"
amoodarya
  • amoodarya
@YanaSidlinskiy @yomamabf @yingpeng @yacobtewolde @uybuyvf @uybuyvf @otaylor19 @pooja195 @peachpi @pattycake1 @pinkros @AbdullahM @xavierbo2 @Xaze @xamr @xitsaliciaa @calculusxy @valiant1 @brebre5564 @EmilyD22 @esam2 @Emilyf29 @radar @GeniousCreation @Ghostedly @gabgurl @GloGangg_Jayy @LegendarySadist @lizajune @lofi @lorrainetocuteherrera
amoodarya
  • amoodarya
I think ,maybe useful not for promoting I beg you ,if bother you
YanaSidlinskiy
  • YanaSidlinskiy
*ahem* Mass tagging?;) Never knew anything about this. To me, this is like a whole new Italian language.
amoodarya
  • amoodarya
\[x=t\\y=2t-1\\0 \leq t \leq 2\\\] draw it note about domain of "t" \[x=t\\y=2t-1\\0 \leq t \leq 2\\ \rightarrow \left\{ (x,y):x=t,y=2t-1,0 \leq t \leq 2 \right\}\\0 \leq x \leq 2\\0 \leq t \leq 2 \rightarrow 0 \leq 2t \leq 4 \rightarrow 0-1 \leq 2t-1 \leq 4-1\\ -1\le y \le 3\] it is a line ,but restricted \[0 \leq t \leq 2\\t=0 \rightarrow x=t=0 ,y=2t-1=-1 \rightarrow (0,-1)\\t=2 \rightarrow x=t=2 ,y=2t-1=-1 \rightarrow (2,3)\] |dw:1436398201172:dw|
amoodarya
  • amoodarya
Trick to solve ,system of equation like this \[\frac{x}{2}=\frac{y-1}{3}=\frac{z}{5}\\x-y+z=11\] we can use the parameter to show all of variable by ,one variable \[\frac{ x }{ 2 }=\frac{ y-1 }{ 3 }=\frac{ z }{ 5 }=t\\x=2t\\y=3t+1\\z=5t\\\] now put them in x-y+z=11 \[x=2t\\y=3t+1\\z=5t\\x-y+z=11\rightarrow \\(2t)-(3t+1)+(5t)=11\\4t=12\\t=3\\\] now we can easily find x,y,z \[x=2t \rightarrow x=2(3)=6\\y=3t+1\rightarrow y=9+1=10\\z=5t \rightarrow z=15\\\]
amoodarya
  • amoodarya
some parametric curve Cycloid\[x=r(t-\sin t)\\y=r(1-cost)\] The cycloid represents the following situation. Consider a wheel of radius r. Let the point where the wheel touches the ground initially be called P. Then start rolling the wheel to the right. As the wheel rolls to the right trace out the path of the point P. The path that the point P traces out is called a cycloid and is given by the equations above. In these equations we can think of θ as the angle through which the point P has rotated.
1 Attachment
amoodarya
  • amoodarya
Here is a cycloid sketched out with the wheel shown at various places. The blue dot is the point P on the wheel that we’re using to trace out the curve.
ganeshie8
  • ganeshie8
Nice!
amoodarya
  • amoodarya
Circle A more sophisticated example is the following. Consider the unit circle which is described by the ordinary (Cartesian) equation \[x^2+y^2=1\] This equation can be parameterized as follows \[ (\cos(t),\; \sin(t))\quad\mathrm{for}\ 0\leq t < 2\pi.\, \] With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot. In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist. In the case of the circle, such a rational parameterization is \[x=\frac{1-t^2}{1+t^2}\\y=\frac{2t}{1+t^2}\] or \[x=\pm \sqrt{1-t^2}\\y=t\]
amoodarya
  • amoodarya
ellipse \[x=a sint \\y=b cost \\a \neq b \neq 0 \\(\frac{x}{a})^2+(\frac{y}{b})^2=\sin^2 t+\cos^t=1\] or \[ x=a(\frac{2t}{1+t^2})\\ y=b(\frac{1-t^2}{1+t^2})\]
amoodarya
  • amoodarya
Parabola The simplest equation for a parabola \[y=x^2\] can be parameterized by using a free parameter t, and setting \[x=t\\y=t^2\]
amoodarya
  • amoodarya
|dw:1436438108955:dw| note that \[t \geq 0\]
amoodarya
  • amoodarya
@mukushla

Looking for something else?

Not the answer you are looking for? Search for more explanations.