anonymous
  • anonymous
Proving Trigonometric Identities
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1436392327801:dw|
Astrophysics
  • Astrophysics
Start working with the left side, \[\cos(2 \theta) = \cos^2 \theta - \sin^2 \theta\]
anonymous
  • anonymous
I broke down the right side to 1 - {(sin^2[theta] over cos ^2 [theta]} divided by 1 + {(sin^2[theta] over cos ^2 [theta]}

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Astrophysics
  • Astrophysics
Ah, are you trying to use latex? Because I don't see it haha
Astrophysics
  • Astrophysics
You can draw it out
Astrophysics
  • Astrophysics
\[1 - {\sin^2(\theta) \over \cos ^2 (\theta)} + {\sin^2(\theta) \over \cos ^2 (\theta)} \] is this it?
Astrophysics
  • Astrophysics
For the right side you should have \[\large \frac{ -\left( \frac{ \sin(\theta) }{ \cos(\theta) } \right)^2+1 }{ \left( \frac{ \sin(\theta) }{ \cos(\theta) } \right)^2+1 }\]
Astrophysics
  • Astrophysics
If you continue to simplify it you should get \[\frac{ \cos^2(\theta)-\sin^2(\theta) }{ \cos^2(\theta)+\sin^2(\theta) }\]
Astrophysics
  • Astrophysics
You can then work to get that on the left side using what I told you earlier
anonymous
  • anonymous
how did it become cos - sin?
anonymous
  • anonymous
is it cuz 1 - sin is cos
anonymous
  • anonymous
and 1 - cos=sin
Astrophysics
  • Astrophysics
Well I'm not going to use latex for this, I'll just draw it out haha |dw:1436393154153:dw|
Astrophysics
  • Astrophysics
|dw:1436393252856:dw| similarly you can do the same to the numerator and simplify to what we have above
anonymous
  • anonymous
where'd the extra cos come from?
Astrophysics
  • Astrophysics
|dw:1436393543228:dw|
Astrophysics
  • Astrophysics
What extra cos?
Astrophysics
  • Astrophysics
I just used \[\frac{ a }{ b } \pm \frac{ c }{ d } \implies \frac{ ad \pm bc }{ bd }\]
anonymous
  • anonymous
|dw:1436393625814:dw|
Astrophysics
  • Astrophysics
I think you should just play around and see what you get, this one is a bit messy, so the only way you'll learn is by messing around with the algebra and trig functions
anonymous
  • anonymous
@mathstudent55
mathstudent55
  • mathstudent55
\(\large \cos 2\theta ~~~~~~~~~~~~~~~~= \dfrac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \) \(\large \cos^2 \theta - \sin^2 \theta ~~= \dfrac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 +\frac{\sin^2 \theta}{\cos^2 \theta} }\) Now multiply the rgight side by \(\dfrac{\cos^2 \theta}{\cos ^2 \theta} \)
mathstudent55
  • mathstudent55
^right side
Astrophysics
  • Astrophysics
Same thing
anonymous
  • anonymous
|dw:1436394083007:dw|
anonymous
  • anonymous
|dw:1436394195835:dw|
mathstudent55
  • mathstudent55
\(\large \cos^2 \theta - \sin^2 \theta ~~= \dfrac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 +\frac{\sin^2 \theta}{\cos^2 \theta} } \times \dfrac{ \cos^2 \theta} {\cos^2 \theta}\) \(\large \cos^2 \theta - \sin^2 \theta ~~= \dfrac{\cos^2 \theta - \sin^2 \theta}{\color{red}{\cos^2 \theta + \sin^2 \theta}} \) We use the identity: \(\cos^2 \theta + \sin^2 \theta = 1\) \(\large \cos^2 \theta - \sin^2 \theta ~~= \dfrac{\cos^2 \theta - \sin^2 \theta}{\color{red}{1}} \) \(\large \cos^2 \theta - \sin^2 \theta ~~= \cos^2 \theta - \sin^2 \theta \)
campbell_st
  • campbell_st
wow... what a long and troublesome problem start with \[\sin^2 + \cos^2 = 1\] divide every term by cos^2 \[\tan^2 + 1 = \frac{1}{cos^2}\] so your problem becomes \[\cos(2\theta) = \frac{1 - \tan^2(\theta)}{\frac{1}{\cos^2(\theta)}}\] remember, dividing by a fraction, flip and multiply \[\cos(2\theta) = (1 - \tan^2(\theta)) \times \frac{\cos^2(\theta)}{1}\] and you get \[\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)\]
anonymous
  • anonymous
Thanks guys @campbell_st @Astrophysics @mathstudent55
mathstudent55
  • mathstudent55
You're welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.