Verify the Identity: cot(x-pi/2)=-tanx Need help solving, will medal immediately. (:

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Verify the Identity: cot(x-pi/2)=-tanx Need help solving, will medal immediately. (:

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

hint: \(\bf cot\left( x-\frac{\pi }{2} \right)\implies \cfrac{cos\left( x-\frac{\pi }{2} \right)}{sin\left( x-\frac{\pi }{2} \right)} \\ \quad \\ \cfrac{cos(x)cos\left(\frac{\pi }{2} \right)+sin(x)sin\left(\frac{\pi }{2} \right)}{sin(x)cos\left(\frac{\pi }{2} \right)-cos(x)sin\left(\frac{\pi }{2} \right)}\)
@jdoe0001 I'm still confused as to how to verify the identity
well... what's the \(cos\left(\frac{\pi }{2} \right)?\) what about the \(sin\left(\frac{\pi }{2} \right) ?\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The cos is 0 and the sin is 1, correct? @jdoe0001
yes so... .one sec
\(\bf cot\left( x-\frac{\pi }{2} \right)\implies \cfrac{cos\left( x-\frac{\pi }{2} \right)}{sin\left( x-\frac{\pi }{2} \right)} \\ \quad \\ \cfrac{cos(x)cos\left(\frac{\pi }{2} \right)+sin(x)sin\left(\frac{\pi }{2} \right)}{sin(x)cos\left(\frac{\pi }{2} \right)-cos(x)sin\left(\frac{\pi }{2} \right)}\implies \cfrac{cos(x)\cdot 0+sin(x)\cdot 1}{sin(x)\cdot 0-cos(x)\cdot 1}\implies ?\)
what are you left with?
We are left with sin(x)/-cos(x) which equals -tanx. Oh my gosh I get it thank you so much!
yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question