can someone explain this to me???

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

can someone explain this to me???

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

simplify
1 Attachment
The first step in simplifying is to multiply out the numerator: \[\large (1-\cos \theta)(1+\cos \theta)=?\] Can you do that and post the result?
\[1+\cos \theta -\cos \theta + \cos^2 ?\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

(1−cosθ)(1+cosθ)=1-cos^2x \[\sqrt{\frac{1-\cos^2x}{\cos^2x}}\] \[\mathrm{Use\:the\:following\:identity}:\quad \:1-\cos ^2\left(x\right)=\sin ^2\left(x\right)\] \[=\sqrt{\frac{\sin ^2\left(x\right)}{\cos ^2\left(x\right)}}\]
ok. so im left with sin(x) over cos(x)?
yes
Nearly correct! However the sign in front of the cos^2 (theta) term should be negative. Therefore we get: \[\large \sqrt{\frac{(1-\cos^{2} \theta)}{\cos^{2} \theta}}\] Does that make sense?
yes. but cant i break that down further?
are you understand @kapukawai
You need to use the relationship: \[\large \sin^{2}\theta+\cos^{2}\theta=1\] From which you get: \[\large 1-\cos^{2}\theta=\sin^{2}\theta\] and finally by substitution we can write: \[\large \sqrt{\frac{\sin^{2}\theta}{\cos^{2}\theta}}\]
Next you can use the relationship \[\large \frac{\sin\theta}{\cos\theta}=\tan\theta\]
so tan theta is the simplified form of ...... ok that makes sence. i just have to memorise the relation ships?
1 Attachment
Yes, those relationships are some of the basic ones in trigonometry.
thank you!
You're welcome :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question