• anonymous
write an equation of a line in slope intercept form that is perpendicular to y=-4x-2 and passes through point (-16,-11)
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • Zale101
Any ideas of where or how to start?
  • anonymous
You want to find the equation for a line that passes through the two points: (-16,-11) and (,). First of all, remember what the equation of a line is: y = mx+b Where: m is the slope, and b is the y-intercept First, let's find what m is, the slope of the line... The slope of a line is a measure of how fast the line "goes up" or "goes down". A large slope means the line goes up or down really fast (a very steep line). Small slopes means the line isn't very steep. A slope of zero means the line has no steepness at all; it is perfectly horizontal. For lines like these, the slope is always defined as "the change in y over the change in x" or, in equation form: So what we need now are the two points you gave that the line passes through. Let's call the first point you gave, (-16,-11), point #1, so the x and y numbers given will be called x1 and y1. Or, x1=-16 and y1=-11. Also, let's call the second point you gave, (,), point #2, so the x and y numbers here will be called x2 and y2. Or, x2= and y2=. Now, just plug the numbers into the formula for m above, like this: m= - -11 - -16 or... m= 11 16 or... m=11/16 So, we have the first piece to finding the equation of this line, and we can fill it into y=mx+b like this: y=11/16x+b Now, what about b, the y-intercept? To find b, think about what your (x,y) points mean: (-16,-11). When x of the line is -16, y of the line must be -11. (,). When x of the line is , y of the line must be . Because you said the line passes through each one of these two points, right? Now, look at our line's equation so far: y=11/16x+b. b is what we want, the 11/16 is already set and x and y are just two "free variables" sitting there. We can plug anything we want in for x and y here, but we want the equation for the line that specfically passes through the two points (-16,-11) and (,). So, why not plug in for x and y from one of our (x,y) points that we know the line passes through? This will allow us to solve for b for the particular line that passes through the two points you gave!. You can use either (x,y) point you want..the answer will be the same: (-16,-11). y=mx+b or -11=11/16 × -16+b, or solving for b: b=-11-(11/16)(-16). b=0. (,). y=mx+b or =11/16 × +b, or solving for b: b=-(11/16)(). b=0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.