Destinyyyy
  • Destinyyyy
Can someone explain this to me?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Destinyyyy
  • Destinyyyy
Simplify the following expression. Express the answer w/positive exponents (3xy^-1/y^3) ^-4
Destinyyyy
  • Destinyyyy
= (3x/ y^-1 y^3) ^-4 = (3x/y^2) ^-4 (3x/y^2) ^-4 = (3x)^-4/(y^2)^-4 = 3^-4 x^-4/y^-8 = y^8/81x^4
Destinyyyy
  • Destinyyyy
I know that my answer is wrong.. Where did I mess up?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

phi
  • phi
it's not clear what the starting expression is. \[ \left(\frac{3xy^{-1}}{y^3}\right)^{-4} \]?
Destinyyyy
  • Destinyyyy
Yes thats correct.. Sorry I dont get how to use the equation thing.
phi
  • phi
ok so the y's inside the parens can be handled a few ways. one way: write y^-1 as 1/y \[ \left(\frac{3x}{y \cdot y^3}\right)^{-4} \\ \]
phi
  • phi
the other way: y^-1 / y^3 . keep the base y. new exponent is top minus bottom exponents: -1 - 3 = -4. so y^-4 \[ \left(3xy^{-4}\right)^{-4} \\ =\left(\frac{3x}{y^4}\right)^{-4} \\\]
phi
  • phi
I would "flip" the fraction and change the sign of the -4 exponent to +4 \[ \left(\frac{y^4}{3x}\right)^{4} \]
phi
  • phi
can you finish ?
Destinyyyy
  • Destinyyyy
Um I think so... Give me a second
Destinyyyy
  • Destinyyyy
I have y^-16/ 3^4 x^-4 = y^-16/?
Destinyyyy
  • Destinyyyy
I know the final answer is y^16/(3x)^4 but im stuck on the last part
phi
  • phi
if you start with \[ \left(\frac{y^4}{3x}\right)^{4} \] all the exponents stay positive
phi
  • phi
if we do it "brute force" remember that \[ \left(\frac{y^4}{3x}\right)^{4} = \left(\frac{y^4}{3x}\right) \left(\frac{y^4}{3x}\right) \left(\frac{y^4}{3x}\right) \left(\frac{y^4}{3x}\right)\]
phi
  • phi
and when you multiply fractions, you multiply top times top y^4 * y^4 * y^4 *y^4 = y^16 (the short way is to use the rule \[ (a^b)^c= a^{b\cdot c} \]
phi
  • phi
and the bottom is \[ \left( 3x\right)^4 \]
phi
  • phi
or 3^4 * x^4 or 81x^4 there are a few ways to write it.
Destinyyyy
  • Destinyyyy
Alright thank you!
phi
  • phi
btw, when you started *** Simplify the following expression. Express the answer w/positive exponents (3xy^-1/y^3) ^-4 **** on the next post you say = (3x/ y^-1 y^3) ^-4 = (3x/y^2) ^-4 notice you changed 3xy^-1 to 3x/y^-1 when you do that (move y^-1 from the "top" to the "bottom"), you should change the sign of the exponent. you should have written: = (3x/ y^1 y^3) ^-4 and then you get = (3x/y^4) ^-4 and now you will get the correct answer
Destinyyyy
  • Destinyyyy
I see
phi
  • phi
and to complete the thought... the other way to do this is \[ \left(\frac{y^4}{3x}\right)^{4}= \frac{\left( y^4\right)^4}{\left( 3x\right)^4}\] and then simplify the top using the rule \[ (a^b)^c= a^{bc} \] to get \(y^{4\cdot 4} = y^{16}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.