anonymous
  • anonymous
Find the standard form of the equation of the parabola with a focus at (0, -3) and a directrix at y = 3. y2 = -12x y2 = -3x y = negative 1 divided by 12x2 y = negative 1 divided by 3x2 @ganeshie8 @dan815 @solomonzelman @nurali @
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Nurali please help
Nurali
  • Nurali
(x - x)^2 + (y - 3)^2 = (x - 0)^2 + (y - -3)^2 y^2 -6y + 9 = x^2 + y^2 + 6y + 9 -12 y = x^2 y = - x^2 / 12 (or (-1/12)x^2
anonymous
  • anonymous
can u help me with aother one? @Nurali

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nurali
  • Nurali
i will try.
anonymous
  • anonymous
Find an equation in standard form for the hyperbola with vertices at (0, ±6) and asymptotes at y = ±3 divided by 2.x. y squared over 36 minus x squared over 16 = 1 y squared over 4 minus x squared over 9 = 1 y squared over 36 minus x squared over 4 = 1 y squared over 16 minus x squared over 36 = 1
anonymous
  • anonymous
@Nurali
anonymous
  • anonymous
@Nurali please help

Looking for something else?

Not the answer you are looking for? Search for more explanations.