anonymous
  • anonymous
If f(x) = 1 – x, which value is equivalent to |f(i)|? options are: A.0 B.1 C. √2 D. √-1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
freckles
  • freckles
\[|a+bi|=\sqrt{a^2+b^2}\]
chrisdbest
  • chrisdbest
B should be the closest
freckles
  • freckles
it actually isn't B

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

chrisdbest
  • chrisdbest
Bcuz i = sqrt -1, and the absolut value of a negative number is a positive number
freckles
  • freckles
\[f(i)=1-i \\ |f(i)|=|1-i|=?\]
anonymous
  • anonymous
sorry guys but im still in the blue here ahahah
chrisdbest
  • chrisdbest
Oh so its A!!!
freckles
  • freckles
\[|1-i|=\sqrt{1^2+1^2}=?\]
chrisdbest
  • chrisdbest
Cuz 1 - 1 = 0!
chrisdbest
  • chrisdbest
Bam!! Medal me please
freckles
  • freckles
or if you wanted to look at it as \[\sqrt{1^2+(-1)^2} \text{ instead of } \sqrt{1^2+1^2}\]
anonymous
  • anonymous
ayyyy lmao
freckles
  • freckles
all I'm asking you to do is do the 1+1 underneath the radical
freckles
  • freckles
\[|a+bi|=\sqrt{a^2+b^2} \ \\ \text{ and you have } \\ |1+-1i|=\sqrt{1^2+(-1)^2}=\sqrt{1^2+1^2}=?\] can you finish this ?
anonymous
  • anonymous
OOOOOOOO THANKS MAN LMAO I DONT KNOW HOW I DIDNT SEE THAT ahha its √2
freckles
  • freckles
yep :)
chrisdbest
  • chrisdbest
Dang I didn't even see that answer choice. I'm Dyslexic, I thought it said \[\sqrt{21}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.