If f(x) = 1 – x, which value is equivalent to |f(i)|? options are: A.0 B.1 C. √2 D. √-1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If f(x) = 1 – x, which value is equivalent to |f(i)|? options are: A.0 B.1 C. √2 D. √-1

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[|a+bi|=\sqrt{a^2+b^2}\]
B should be the closest
it actually isn't B

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Bcuz i = sqrt -1, and the absolut value of a negative number is a positive number
\[f(i)=1-i \\ |f(i)|=|1-i|=?\]
sorry guys but im still in the blue here ahahah
Oh so its A!!!
\[|1-i|=\sqrt{1^2+1^2}=?\]
Cuz 1 - 1 = 0!
Bam!! Medal me please
or if you wanted to look at it as \[\sqrt{1^2+(-1)^2} \text{ instead of } \sqrt{1^2+1^2}\]
ayyyy lmao
all I'm asking you to do is do the 1+1 underneath the radical
\[|a+bi|=\sqrt{a^2+b^2} \ \\ \text{ and you have } \\ |1+-1i|=\sqrt{1^2+(-1)^2}=\sqrt{1^2+1^2}=?\] can you finish this ?
OOOOOOOO THANKS MAN LMAO I DONT KNOW HOW I DIDNT SEE THAT ahha its √2
yep :)
Dang I didn't even see that answer choice. I'm Dyslexic, I thought it said \[\sqrt{21}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question