A 'snooker' table (measuring 8 metres by 4m) with 4 'pockets' (measuring 0.5m and placed at diagonal slants in all 4 corners) contains 10 balls (each with a diameter of 0.25m) placed at the following coords:
2m,1m...(white ball)
...and red balls...
1m,5m... 2m,5m... 3m,5m
1m,6m... 2m,6m... 3m,6m
1m,7m... 2m,7m... 3m,7m
The white ball is then shot at a particular angle from 0 to 360 degrees (0 being north, and going clockwise).
Just to make it clear, a ball is 'potted' if at least half of the ball is in area of the 'pocket'
Assuming the balls travel indefinitely (i.e. no loss of energy via friction, air resistance or collisions), answer the following:
a: What exact angle/s should you choose to ensure that all the balls are potted the quickest?
b: What is the minimum amount of contacts the balls can make with each other before they are all knocked in?
c: Same as b, except that each ball - just before it is knocked in - must not have hit the white ball on its previous contact (must be a red instead of course).
d: What proportion of angles will leave the white ball the last on the table to be potted?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions.

- muscrat123

- chestercat

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- chrisdbest

Yes I can.

- muscrat123

- muscrat123

Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

- chrisdbest

It's C!!

- chrisdbest

lol

- muscrat123

|dw:1436478364358:dw|

- muscrat123

i thought those were questions

- muscrat123

Looking for something else?

Not the answer you are looking for? Search for more explanations.