zeesbrat3
  • zeesbrat3
A rectangular box has a square base with an edge length of x cm and a height of h cm. The volume of the box is given by V = x^2h cm^3. Find the rate at which the volume of the box is changing when the edge length of the base is 10 cm, the edge length of the base is increasing at a rate of 3 cm/min, the height of the box is 5 cm, and the height is decreasing at a rate of 1 cm/min.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zeesbrat3
  • zeesbrat3
Please help and explain
Loser66
  • Loser66
@ikram002p
butterflydreamer
  • butterflydreamer
write out all the information given to us first \[V=x^2h\] and we want to find dV/dt = ? when \[x = 10, \frac{ dx }{ dt} = 3 \] \[h = 5, \frac{ dh }{ dt }= -1\] Okaay and now you want to differentiate V= x^2h in terms of both "x" and "h" like this: \[V = x^2h \rightarrow \frac{ dV }{ dx }= 2xh \] \[V = x^2h \rightarrow \frac{ dV }{ dh } = x^2 \] Finally, use this formula to work out the rate of change of the volume :) \[\frac{ dV }{ dt } = \frac{ dV }{ dx } \times \frac{ dx }{ dt} + \frac{ dV }{ dh } \times \frac{ dh }{dt }\] Now scroll up and just plug in all the information from the above and we get: \[\frac{ dV }{ dt} = 2xh \times 3 + x^2 \times -1 \rightarrow \frac{ dV }{ dt } = 2(10)(5) \times 3 + (10)^2 \times -1 \] and you should be able to solve from here :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.