anonymous
  • anonymous
Graph the function in the interval from 0 to 2pi
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
@UsukiDoll
anonymous
  • anonymous
@satellite73

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@oleg3321
oleg3321
  • oleg3321
ehh idk how to do this one :( sorry
anonymous
  • anonymous
Ok thanks :)
anonymous
  • anonymous
@Michele_Laino
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
Are my options
Michele_Laino
  • Michele_Laino
we can rewrite your function as follows: \[y - 2 = 2\cos \left( {x + \frac{\pi }{6}} \right)\]
anonymous
  • anonymous
how do we graph it from there?
Michele_Laino
  • Michele_Laino
now I make this traslation of the x,y-plane: \[\left\{ \begin{gathered} Y = y - 2 \hfill \\ X = x + \frac{\pi }{6} \hfill \\ \end{gathered} \right.\] where X and Y are the new coordinates
Michele_Laino
  • Michele_Laino
using those coordintes, we can rewrite your function as below: \[Y = 2\cos X\]
Michele_Laino
  • Michele_Laino
am I right?
anonymous
  • anonymous
I think so. Which graph would work best?
Michele_Laino
  • Michele_Laino
the graph of the function: \[Y = 2\cos X\] is: |dw:1436508552379:dw|
anonymous
  • anonymous
Do you think graph B is the best fit?
Michele_Laino
  • Michele_Laino
now we have to refer that graphys to our old coordinates x,y
Michele_Laino
  • Michele_Laino
graphic*
Michele_Laino
  • Michele_Laino
in order to do that, we note that the origin of the X,Y plane is located at: X=0, and Y=0 so substituting into our transformation formulas, we get: \[\left\{ \begin{gathered} 0 = y - 2 \hfill \\ 0 = x + \frac{\pi }{6} \hfill \\ \end{gathered} \right. \Rightarrow \left\{ \begin{gathered} y = 2 \hfill \\ x = - \frac{\pi }{6} \hfill \\ \end{gathered} \right.\]
anonymous
  • anonymous
How do i graph that
Michele_Laino
  • Michele_Laino
so here is the requested graph: |dw:1436508973906:dw|
anonymous
  • anonymous
i dont have a graph that matches that
Michele_Laino
  • Michele_Laino
more precisely, we have: |dw:1436509257926:dw|
Michele_Laino
  • Michele_Laino
yes, you have, please look at the third option
Michele_Laino
  • Michele_Laino
now you have to neglect the X,Y reference system of my drawing. What do you get?

Looking for something else?

Not the answer you are looking for? Search for more explanations.