anonymous
  • anonymous
Find 2p ^2 + 3p - 4 less - 2p ^2 - 3p + 4.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
marihelenh
  • marihelenh
Same thing but now with subtraction. You will take 2p^2-(-2p^2) and 3p-(-3p) and -4-4.
marihelenh
  • marihelenh
Subtracting a negative number is the same as adding it, so you can 2p^2+2p^2 and 3p+3p.
mathstudent55
  • mathstudent55
\((2p^2 + 3p - 4) - (-2p^2 - 3p + 4) =\) You need to subtract the polynomials above. The first step is to rewrite the first polynomial without parentheses since those parentheses are not needed. \(= 2p^2 + 3p - 4 - (-2p^2 - 3p + 4) \) The next step is to deal with the parentheses around the second polynomial. We need to get rid of those parentheses.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

marihelenh
  • marihelenh
When you add them, you should get 4p^2+6p-8.
anonymous
  • anonymous
so 4p^2 and 6p and -8?
anonymous
  • anonymous
thanks for the help
mathstudent55
  • mathstudent55
Since there is a negative sign to the left of the parentheses, in order to get rid of the parentheses, you distribute the negative sign to each each term inside the parentheses. What ends up happening is that every sign inside the parentheses changes. \(= 2p^2 + 3p - 4 - (-2p^2 - 3p + 4)\) \(= 2p^2 + 3p - 4 + 2p^2 + 3p - 4\) Now that the parentheses are taken care of, you just combine like terms like we did before. \(= 2p^2 + 2p^2 + 3p + 3p - 4 - 4\) \(= 4p^2 + 6p + - 8\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.