I need help on a question!!! will fan and medal

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I need help on a question!!! will fan and medal

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Prove: The three medians of ΔABC intersect at a common point. When written in the correct order, the two-column proof below describes the statements and justifications for proving the three medians of a triangle all intersect in one point: Statements Justifications Point F is a midpoint of Line segment AB Point E is a midpoint of Line segment AC Draw Line segment BE Draw Line segment FC by Construction Point G is the point of intersection between Line segment BE and Line segment FC Intersecting Lines Postulate Draw Line segment AG by Construction Point D is the point of intersection between Line segment AG and Line segment BC Intersecting Lines Postulate Point H lies on Line segment AG such that Line segment AG ≅ Line segment GH by Construction I BGCH is a parallelogram Properties of a Parallelogram (opposite sides are parallel) II Line segment FG is parallel to line segment BH and Line segment GE is parallel to line segment HC Midsegment Theorem III Line segment BD ≅ Line segment DC Properties of a Parallelogram (diagonals bisect each other) IV Line segment GC is parallel to line segment BH and Line segment BG is parallel to line segment HC Substitution Line segment AD is a median Definition of a Median Which is the most logical order of statements and justifications I, II, III, and IV to complete the proof? IV, II, III, I II, IV, I, III IV, II, I, III II, IV, III, I
http://learn.flvs.net/webdav/assessment_images/educator_geometry_v16/image0184e982e70.gif
Welcome to OS

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Sunshine.... Sunshine1234? e.e
I'm unrelated to it; totally assure
xD oki
Hello, I'm sorry but you're not allowed to post assessment Q's. You should do the work yourself. We HELP you study for quizzes, tests, exams, not give you the answer to them. Please close this and refer to the OS Code of Conduct for more information. Thank you!
Is this question from a test? In OS we can't help on tests or exams
\(\sf\Large\href{http:///openstudy.com/code-of-conduct}{Code~Of~Conduct}\) (Click here)
\(\Large\rm\color{darkviolet}{\sideset{_\star~^\star}{~~_\star~^\star}{_\star}\hspace{-56pt}\color{blueviolet}{\overset{^\star~~~_\star~~~_\star~~~^\star~~~_\star~~~^\star~~~^\star}{^\star~^\star~~~ \star~~~~_\star~\star~_\star~~~^\star}\hspace{-35pt}}\color{bluepurple}{\underset{^\star~~~^\star~~~\star~~~_\star~~~\star~~~^\star~~~_\star~~~}{\star}}}\hspace{96pt}\Large\rm\color{darkviolet}{\sideset{_\star~^\star}{~~~~~~^\star}{_\star}\hspace{-129pt}\color{blueviolet}{\overset{^\star~~~_\star~~~_\star~~~^\star~~~_\star~~~^\star~~~^\star}{^\star~^\star~~~ \star~^\star~~\star~~~_\star~~~^\star}\hspace{-159pt}}\color{bluepurple}{\underset{^\star~~~^\star~~~\star~~~_\star~~~\star~~~^\star~~~_\star~~~}{\star}}}\hspace{-165pt}\LARGE\rlap{\it\color{red}{W}\color{orange}{e}\color{gold}{l}\color{lime}{c}\color{blue}{o}\color{blueviolet}{m}\color{purple}{e}\color{orchid}{~t}\color{magenta}{o}\color{red}{~O}\color{orange}{p}\color{gold}{e}\color{lime}{n}\color{cyan}{S}\color{blue}{t}\color{blueviolet}{u}\color{purple}{d}\color{orchid}{y}\color{magenta}{!}}{\hspace{-1.5pt}\it\color{black}{Welcome~to~OpenStudy!}}\) \(\it\color{charcoal}{~~~~Please~be~sure~to~read~OpenStudy's~terms~listed~within~the~following~links:}\) \(~\hspace{1.5pt}\large\color{red}{_✧~}\huge\color{orange}{^✧~}\normalsize\color{gold}{✧~~}\Large\color{blue}{/)}\LARGE\color{blue}{_∧}\Large\color{blue}{/)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}\hspace{-3.5pt}\Large\color{blueviolet}{/)}\LARGE\color{blueviolet}{_∧}\Large\color{blueviolet}{/)~~~~}\hspace{-10pt}\large\color{gold}{^✧}\LARGE\color{orange}{_✧}\huge\color{yellow}{^✧}\)\(~~\Large\color{red}{~~_✧~~}\large\rm\color{blue}{O(}\Large\color{blue}{^}\color{blue}{_ヮ}\hspace{-2pt}\Large\color{blue}{^}\hspace{-2pt}\color{blue}{)o}\hspace{160pt}\Large\rm\color{blueviolet}{o(}\Large\hspace{-3pt}\color{blueviolet}{^}\color{blueviolet}{_ヮ}\hspace{-2pt}\Large\color{blueviolet}{^~}\hspace{-3pt}\large\color{blueviolet}{)O}\small\color{orange}{~_✧}\Large\color{gold}{~~^✧}\hspace{-235.7pt}\underset{\href{https:///openstudy.com/terms-and-conditions}{\hspace{0pt}\LARGE\it{\color{red}{\bigstar~T}}\color{orange}{e}\color{gold}{r}\color{lime}{m}\color{cyan}{s}\color{blue}{~a}\color{blueviolet}{n}\color{purple}{d}\color{orchid}{~C}\color{magenta}{o}\color{pink}{n}\color{red}{d}\color{orange}{i}\color{gold}{t}\color{lime}{i}\color{cyan}{o}\color{blue}{n}\color{blueviolet}{s}\color{red}{~\bigstar}}}{{\href{https:///openstudy.com/code-of-conduct}{\hspace{5.5pt}\large\it{\color{red}{\bigstar~C}}\color{orange}{o}\color{gold}{d}\color{lime}{e~}\color{cyan}{o}\color{blue}{f~}\color{blueviolet}{C}\color{purple}{o}\color{orchid}{n}\color{magenta}{d}\color{pink}{u}\color{red}{c}\color{orange}{t}\color{red}{~\bigstar}}}}\) \(~\small\color{red}{~~~~~~~~_✧~~~~}\hspace{0pt}\large\rm\color{blue}{O(")(")~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}\hspace{0pt}\large\rm\color{blueviolet}{(")(")O}\small\color{red}{~~~~~~✧}\) \(\Large\color{green}{~~~~~⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒}\)
This is not from a test
http://prntscr.com/7r7szx

Not the answer you are looking for?

Search for more explanations.

Ask your own question