anonymous
  • anonymous
Let u = <-5, -3>, v = <-6, -1>. Find -3u + 5v. @hero @dan815 @nincompoop @mathstudent55 @wio @radar @undeadknight26
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
misty1212
  • misty1212
HI!!
misty1212
  • misty1212
multiply both entries in \(u\) by \(-3\) multiply both entries in \(v\) by \(5\) then add
anonymous
  • anonymous
huh? @misty1212

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

misty1212
  • misty1212
i don't really know another way to say it
misty1212
  • misty1212
u has two numbers right?
anonymous
  • anonymous
can u show me? @misty1212
misty1212
  • misty1212
multiply each of them by \(-3\)
misty1212
  • misty1212
\[u=<-5,-3>\\ -3u=-3<-5,-3>=<15,9>\]
misty1212
  • misty1212
in other words, multiply each entry by \(-3\)
misty1212
  • misty1212
repeat to find \[5v=5<-6,-1>\]
anonymous
  • anonymous
so its <-30,-5> @misty1212
misty1212
  • misty1212
yes
misty1212
  • misty1212
then add
anonymous
  • anonymous
can u help me with another? @misty1212
misty1212
  • misty1212
did you add them yet?
anonymous
  • anonymous
yes i got <-15,4> @misty1212
misty1212
  • misty1212
oops yes you are right sorry
anonymous
  • anonymous
can u help me with another? @misty1212
misty1212
  • misty1212
ok sure
anonymous
  • anonymous
Find a • b. a = 4i + 3j, b = -4i + 4j -4 28 <-16, 12> <0, 7>
misty1212
  • misty1212
is that a dot between them?
anonymous
  • anonymous
i think it times
misty1212
  • misty1212
i think it means the "dot product"
misty1212
  • misty1212
\[<4,3>\cdot<-4,4>=4\times (-4)+3\times 4\]
misty1212
  • misty1212
it is a number, not a vector
misty1212
  • misty1212
\[-16+12=-4\] in other words
anonymous
  • anonymous
Find the first six terms of the sequence. a1 = -7, an = 2 • an-1 -7, -14, -12, -10, -8, -6 0, 2, -14, -12, -10, -8 -7, -14, -28, -56, -112, -224 -14, -28, -56, -112, -224, -448
anonymous
  • anonymous
@misty1212
misty1212
  • misty1212
start with \(-7\)
misty1212
  • misty1212
then multiply it by 2 to get the next number
misty1212
  • misty1212
\[-7,-7\times 2,-7\times 2\times 2...\]
misty1212
  • misty1212
so this one \[ -7, -14, -28, -56, -112, -224\]
anonymous
  • anonymous
Find the standard form of the equation of the parabola with a focus at (0, 4) and a directrix at y = -4. y = 1 divided by 16x2 y2 = 16x y2 = 4x y = 1 divided by 4x2 @misty1212
misty1212
  • misty1212
i would go with the first one want to check?
misty1212
  • misty1212
http://www.wolframalpha.com/input/?i=parabola+y+%3D+1%2F16x%5E2
misty1212
  • misty1212
yup looks good
anonymous
  • anonymous
Find an explicit rule for the nth term of the sequence. 3, -12, 48, -192, ... an = 3 • 4n - 1 an = 3 • 4n + 1 an = 3 • (-4)n - 1 an = 3 • (-4)n @misty1212
misty1212
  • misty1212
see how the signs change?
anonymous
  • anonymous
yes by -4 @misty1212
misty1212
  • misty1212
so only \[a_n=3(-4)^{n-1}\] makes any sense
anonymous
  • anonymous
one last one? @misty1212
misty1212
  • misty1212
kk
anonymous
  • anonymous
Use graphs and tables to find the limit and identify any vertical asymptotes of the function.
1 Attachment
misty1212
  • misty1212
? vertical asymptote is where the denominator is zero, so \(x=5\)
anonymous
  • anonymous
what is the limit @misty1212
misty1212
  • misty1212
ooh i see
misty1212
  • misty1212
limit is infinity \(\infty\)
misty1212
  • misty1212
oh no oops
misty1212
  • misty1212
try \(-\infty\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.