anonymous
  • anonymous
5(cos^2)60 + 4(sec^2)45 - (tan^2)45 = x Find x @Michele_Laina
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
is 40 degrees the angle of the second term?
anonymous
  • anonymous
45*
Michele_Laino
  • Michele_Laino
ok!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
? How to solve? ?
Michele_Laino
  • Michele_Laino
we have to keep in mind these values: \[\Large \begin{gathered} \cos 60 = \frac{1}{2} \Rightarrow {\left( {\cos 60} \right)^2} = \frac{1}{4} \hfill \\ \hfill \\ \sec 45 = \frac{1}{{\cos 45}} = \frac{1}{{\sqrt 2 /2}} = \frac{2}{{\sqrt 2 }} = \sqrt 2 \hfill \\ {\left( {\sec 45} \right)^2} = 2 \hfill \\ \hfill \\ \tan 45 = 1 \Rightarrow {\left( {\tan 45} \right)^2} = 1 \hfill \\ \end{gathered} \]
anonymous
  • anonymous
Ok!
Michele_Laino
  • Michele_Laino
please substitute them into your equation
anonymous
  • anonymous
OMG!!! ISY SEC 30 NETHER 40 NOR 45 :(
Michele_Laino
  • Michele_Laino
ok! I will rewrite the right value
anonymous
  • anonymous
OK!
Michele_Laino
  • Michele_Laino
here are the right values: \[\Large \begin{gathered} \cos 60 = \frac{1}{2} \Rightarrow {\left( {\cos 60} \right)^2} = \frac{1}{4} \hfill \\ \hfill \\ \sec 30 = \frac{1}{{\cos 30}} = \frac{1}{{\sqrt 3 /2}} = \frac{2}{{\sqrt 3 }} \hfill \\ {\left( {\sec 30} \right)^2} = \frac{4}{3} \hfill \\ \hfill \\ \tan 45 = 1 \Rightarrow {\left( {\tan 45} \right)^2} = 1 \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
so, after a simple substitution, we get: \[\Large \left( {5 \times \frac{1}{4}} \right) + \left( {4 \times \frac{4}{3}} \right) - 1 = x\]
Michele_Laino
  • Michele_Laino
please simplify

Looking for something else?

Not the answer you are looking for? Search for more explanations.