can someone prove that root 2 is not a rational number

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

can someone prove that root 2 is not a rational number

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Here this link goes through how to prove it: http://www.algebra.com/algebra/homework/NumericFractions/Numeric_Fractions.faq.question.485329.html
You can suppose it is rational. That means it will be of the form a/b where a and b are integers . You should wind up with a contradiction which will prove it is irrational .
The key is using a/b is already a reduced fraction like a and b should have no common factors except one (or - one) of course.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\sqrt{2}=\frac{a}{b} \] So hint: square both sides and multiply both sides by b say something about a factor of a and then you will say something about a factor of b eventually and you should see that a and b actually do have a common factor and that is where you have your contradiction
multiply both sides by b^2 *
first we suppose it is rational so we can write as \(\sqrt{2}=\frac{a}{b}\) where a and b are integers in reduced form means cannot be factored in any form we square both sides \(2=\frac{a^2}{b^2}\) then we get \(a^2=2b^2\) this implies that a^2 is even hence a must be even (we said a cannot be reduced but this says the opposite already) since a is even then a=2k so 4k^2=2b^2 ===> b^2=2k^2 hence b^2 is even then it must be that b is even aha but we said b is irreducible! so according to this a and b have a common factor! contradiction! hence root2 is not rational
prove this a^2 implies a is even :)
a^2 is even implies a is even
can you prove it?
Suppose \(a\) is odd. Then \(a=2k+1\) for some \(k\in \mathbb{Z}\). So \(a^2 = (2k+1)^2=4k^2+4k+1 = 2(2k^2+2k)+1\). Since \(2k^2+2k\in \mathbb{Z}\) we have that \(2(2k^2+2k)+1\) is odd. So by contrapositive we are done.

Not the answer you are looking for?

Search for more explanations.

Ask your own question