zeesbrat3
  • zeesbrat3
If f(x) is differentiable for the closed interval [−3, 2] such that f(−3) = 4 and f(2) = 4, then there exists a value c, −3 < c < 2 such that
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zeesbrat3
  • zeesbrat3
@amoodarya
amoodarya
  • amoodarya
|dw:1436665630994:dw|
amoodarya
  • amoodarya
|dw:1436665699827:dw| every one can be f(x) so ...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amoodarya
  • amoodarya
|dw:1436665754136:dw| even this one
amoodarya
  • amoodarya
\[f'(c)=\frac{f(b)-f(a)}{b-a}\\=\frac{4-4}{2-(-3)}=0\]
amoodarya
  • amoodarya
|dw:1436665846936:dw|
zeesbrat3
  • zeesbrat3
How did you know it was f'(c)?
anonymous
  • anonymous
Looks like they're testing you on Rolle's Theorem
anonymous
  • anonymous
But you can also appeal to the Mean Value Theorem

Looking for something else?

Not the answer you are looking for? Search for more explanations.