anonymous
  • anonymous
How to get the laplace inverse for a fraction a complex poles at S-domain ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
abb0t
  • abb0t
@wio
anonymous
  • anonymous
@wio
anonymous
  • anonymous
a fraction a complex poles at s-domain? can you clarify what you mean?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
if you have a rational expression \(F(s)=P(s)/Q(s)\) where \(P(s)=k(s-z_1)\cdots(s-z_m),Q(s)=(s-p_1)\cdots(s-p_n)\) where \(z_i,p_j\) are the zeros and poles of \(F\) then we can use Mellin's inversion formula as normal: $$f(t)=\int_{\gamma} e^{st}F(s)\ ds$$where \(\gamma\) is given by the line \((s_0-i\infty, s_0+i\infty)\) where \(s_0\) is chosen to ensure \(F\) is well-behaved along this line; in particular, it is sufficient to pick \(s_0>\max|p_j|\)
anonymous
  • anonymous
this is basically just the inverse Fourier transform taking into account that we need exponentials to tame asymptotic behavior

Looking for something else?

Not the answer you are looking for? Search for more explanations.