AmTran_Bus
  • AmTran_Bus
Is this series convergent or divergent?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AmTran_Bus
  • AmTran_Bus
FLVSKidd
  • FLVSKidd
https://www.khanacademy.org/math/integral-calculus/sequences_series_approx_calc/seq-conv-diverg/v/convergent-and-divergent-sequences
AmTran_Bus
  • AmTran_Bus
My guess is divergent

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

AmTran_Bus
  • AmTran_Bus
Hello
AmTran_Bus
  • AmTran_Bus
@Empty
misssunshinexxoxo
  • misssunshinexxoxo
Looks like divergent to me
AmTran_Bus
  • AmTran_Bus
Thanks
xapproachesinfinity
  • xapproachesinfinity
Looks like is not a good answer, some series do seem to diverge but surprisingly converge
xapproachesinfinity
  • xapproachesinfinity
That could be written in this form \[\sum_{0} ^{\infty}(-1)^{n+1}\frac{n+1}{n+9} \]
xapproachesinfinity
  • xapproachesinfinity
By nth term test that diverges.
xapproachesinfinity
  • xapproachesinfinity
\(n\rightarrow \infty ~~\frac{n+1} {n+9} \rightarrow 1\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.