A water filter has the shape of an inverted right circular cone with base radius 3 meters and height 9 meters. Water is being pumped into the filter at the rate of 10 meters3/sec. Find the rate, in meters/sec, at which the water level is rising when the water is 3 meters deep.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A water filter has the shape of an inverted right circular cone with base radius 3 meters and height 9 meters. Water is being pumped into the filter at the rate of 10 meters3/sec. Find the rate, in meters/sec, at which the water level is rising when the water is 3 meters deep.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hey
Hey! related rates problem
|dw:1436729337203:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Ya, my favorite...
|dw:1436729438553:dw|
What's the next step?
I miss these problems, so fun. What we're given is \[\frac{ dV }{ dt } = 10\frac{ m^3 }{ s }\] and you have to find \[\frac{ dh }{ dt }\] ganeshie used similar triangles above to find r so we can use the volume formula \[V = \frac{ 1 }{ 3 }\pi \left( \frac{ h }{ 3 } \right)^2h = \frac{ 1 }{ 9 }\pi h^3\] now we differentiate!!
So.. \[\frac{ dv }{dt? } = \frac{ 1 }{ 3 }pih^2\]
\[\frac{ dV }{ dt } = \frac{ \pi }{ 3 }h^2 \frac{ dh }{ dt }\] notice we differentiate respect to t
Remember we are using the chain rule here, sorry @ganeshie8 for intruding hehe I just like these problems :D
Now we solve for \[\frac{ dh }{ dt }\] can you go ahead and try that please
here is my reasoning: |dw:1436729996057:dw| we can write: \[\Large \begin{gathered} dV = \pi {r^2}dh \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \pi {r^2}\frac{{dh}}{{dt}} \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \pi {\left( {\frac{h}{3}} \right)^2}\frac{{dh}}{{dt}} \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \frac{{\pi {h^2}}}{9}\frac{{dh}}{{dt}} \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \frac{\pi }{{27}}\frac{{d\left( {{h^3}} \right)}}{{dt}} \hfill \\ \end{gathered} \]
\[10 = \frac{ 1 }{ 3 }\pi(9)^2\frac{ dh }{ dt }\]
\[\frac{ dh }{ dt } = \frac{ 3 }{ \pi h ^2 } \frac{ dV }{ dt }\]
\[\frac{ dh }{ dt } = \frac{ 3 }{ \pi(3)^2 } \times 10 = \frac{ 30 }{ 9 \pi ^2 }\]
That is the rate of water rising
So \[\frac{ 30 }{ 88.7364 }\]
Or .33807
The second one
This is wrong
The answer is 3.18. Astrophysics is wrong on so many levels.
@dahmanman show your work and I might believe you.

Not the answer you are looking for?

Search for more explanations.

Ask your own question