zeesbrat3
  • zeesbrat3
A water filter has the shape of an inverted right circular cone with base radius 3 meters and height 9 meters. Water is being pumped into the filter at the rate of 10 meters3/sec. Find the rate, in meters/sec, at which the water level is rising when the water is 3 meters deep.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zeesbrat3
  • zeesbrat3
Hey
ganeshie8
  • ganeshie8
Hey! related rates problem
ganeshie8
  • ganeshie8
|dw:1436729337203:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zeesbrat3
  • zeesbrat3
Ya, my favorite...
ganeshie8
  • ganeshie8
|dw:1436729438553:dw|
zeesbrat3
  • zeesbrat3
What's the next step?
Astrophysics
  • Astrophysics
I miss these problems, so fun. What we're given is \[\frac{ dV }{ dt } = 10\frac{ m^3 }{ s }\] and you have to find \[\frac{ dh }{ dt }\] ganeshie used similar triangles above to find r so we can use the volume formula \[V = \frac{ 1 }{ 3 }\pi \left( \frac{ h }{ 3 } \right)^2h = \frac{ 1 }{ 9 }\pi h^3\] now we differentiate!!
zeesbrat3
  • zeesbrat3
So.. \[\frac{ dv }{dt? } = \frac{ 1 }{ 3 }pih^2\]
Astrophysics
  • Astrophysics
\[\frac{ dV }{ dt } = \frac{ \pi }{ 3 }h^2 \frac{ dh }{ dt }\] notice we differentiate respect to t
Astrophysics
  • Astrophysics
Remember we are using the chain rule here, sorry @ganeshie8 for intruding hehe I just like these problems :D
Astrophysics
  • Astrophysics
Now we solve for \[\frac{ dh }{ dt }\] can you go ahead and try that please
Michele_Laino
  • Michele_Laino
here is my reasoning: |dw:1436729996057:dw| we can write: \[\Large \begin{gathered} dV = \pi {r^2}dh \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \pi {r^2}\frac{{dh}}{{dt}} \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \pi {\left( {\frac{h}{3}} \right)^2}\frac{{dh}}{{dt}} \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \frac{{\pi {h^2}}}{9}\frac{{dh}}{{dt}} \hfill \\ \hfill \\ \frac{{dV}}{{dt}} = \frac{\pi }{{27}}\frac{{d\left( {{h^3}} \right)}}{{dt}} \hfill \\ \end{gathered} \]
zeesbrat3
  • zeesbrat3
\[10 = \frac{ 1 }{ 3 }\pi(9)^2\frac{ dh }{ dt }\]
Astrophysics
  • Astrophysics
\[\frac{ dh }{ dt } = \frac{ 3 }{ \pi h ^2 } \frac{ dV }{ dt }\]
Astrophysics
  • Astrophysics
\[\frac{ dh }{ dt } = \frac{ 3 }{ \pi(3)^2 } \times 10 = \frac{ 30 }{ 9 \pi ^2 }\]
Astrophysics
  • Astrophysics
That is the rate of water rising
zeesbrat3
  • zeesbrat3
So \[\frac{ 30 }{ 88.7364 }\]
zeesbrat3
  • zeesbrat3
Or .33807
Astrophysics
  • Astrophysics
The second one
anonymous
  • anonymous
This is wrong
anonymous
  • anonymous
The answer is 3.18. Astrophysics is wrong on so many levels.
Astrophysics
  • Astrophysics
@dahmanman show your work and I might believe you.

Looking for something else?

Not the answer you are looking for? Search for more explanations.