anonymous
  • anonymous
two circles have areas of 16pi and 25pi. find the ratio of their circumferences
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
ratio of areas = \(\dfrac{16\pi}{25\pi} = \dfrac{16}{25}\) therefore ratio of curcumferences = \(\dfrac{\sqrt{16}}{\sqrt{25}} = \dfrac{4}{5}\)
anonymous
  • anonymous
thank you!
ganeshie8
  • ganeshie8
Yw, that works more generally. You may use it for any kind of lengths : If the "areas" of similar figures are in ratio \(a:b\), then the ratio of their "lengths" will be in ratio \(\sqrt{a}:\sqrt{b}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so it works for area and circumferenceƉ
anonymous
  • anonymous
1st cirlcle area=>pi r*r=16pi ,so r*r=16 and r=4 similarly ,2nd circle area=> pi*r*r=25pi so,r=5 circumference of 1st circle=>2 pi*r so,area =2*pi*4 similarly 2nd area of circle => 2*pi*5 dividing both of them we will get=> 2*pi*4/2*pi*5=4/5 so,ratio is 4/5 :)
anonymous
  • anonymous
thanks)

Looking for something else?

Not the answer you are looking for? Search for more explanations.