anonymous
  • anonymous
Find the sum of a finite geometric sequence from n = 1 to n = 6, using the expression -2(5)n - 1. 1,223 -1,023 7,812 -7,812
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
welshfella
  • welshfella
Sn = a1 * r^n - 1 -------- r - 1
welshfella
  • welshfella
here a1 = -2 , r = 5, n = 6

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Sn = -2 * 5^6 - 1 = 15624 -------- ------- = -7812.5 5 - 1 4
anonymous
  • anonymous
Is that right?
welshfella
  • welshfella
-7812
anonymous
  • anonymous
Can you help me with this one: Find the sum of a finite arithmetic sequence from n = 1 to n = 15, using the expression 2n + 5.
welshfella
  • welshfella
i'm assuming 2n + 5 is the formula for the nth term so first term would be 2+ 5 = 7 and 15th term would be 2(15) + 5 = 35 Sn = (n/2) ( a + l) here n = number of terms, a = first term and l = last ( 15th) term
anonymous
  • anonymous
I dont understand what to do

Looking for something else?

Not the answer you are looking for? Search for more explanations.