anonymous
  • anonymous
Identify the 12th term of a geometric sequence where a1 = 8 and a6 = -8,192. 134,217,728 33,554,432 -33,554,432 -134,217,728
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
the general formula, for the n-th term, is: \[\Large {a_n} = {a_1}{q^{n - 1}}\] so we can write: \[\Large \begin{gathered} {a_6} = {a_1}{q^5} \hfill \\ {a_{12}} = {a_1}{q^{11}} \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
now, substituting your data into the first formula, we get: \[\Large - 8192 = 8{q^5}\] please solve that equation for q
Michele_Laino
  • Michele_Laino
hint: \[\Large q = \sqrt[5]{{\frac{{ - 8192}}{8}}} = ...?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i got a 4
Michele_Laino
  • Michele_Laino
ok! correct!
Michele_Laino
  • Michele_Laino
Please wait, I got q=-4 now, substitute q=-4 and a_1=8 into the second equation: \[\Large {a_{12}} = 8 \times {\left( { - 4} \right)^{11}} = ...?\]
anonymous
  • anonymous
I got -33554432
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
Can you help me with this one: Identify the 17th term of a geometric sequence where a1 = 16 and a5 = 150.06. Round the common ratio and 17th term to the nearest hundredth. (2 points) a17 ≈ 123,802.31 a17 ≈ 30,707.05 a17 ≈ 19,684.01 a17 ≈ 216,654.05
Michele_Laino
  • Michele_Laino
ok!
Michele_Laino
  • Michele_Laino
we can write this: \[\Large {a_5} = {a_1}{q^4}\] so, substituting your data, we have: \[\Large q = \sqrt[4]{{\frac{{{a_5}}}{{{a_1}}}}} = \sqrt[4]{{\frac{{150.06}}{{16}}}} = ...?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.