frank0520
  • frank0520
Use the Divergence Theorem to calculate the flux of F(x,y,z)=(x^5 +y^5 +z^5 -2x-3y-4z)i+sin(2y)j+4z(sin(y))^2 k across the surface of the tetrahedron bounded by the coordinate planes and the plane x+y+z=1.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
|dw:1436838723223:dw|
ganeshie8
  • ganeshie8
\[\iint\limits_{S}\vec{F}\bullet d\vec{S}~=~\iiint \limits_{E}\text{div}(\vec{F}) dV \]
ganeshie8
  • ganeshie8
work the divergence and plug it in

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
we can write this as a volume integral over \(E=\{(x,y,z)\in\mathbb{R}^3:x+y+z\le 1, x\ge 0, y\ge0, z\ge0\}\) using the divergence theorem as ganeshie8 pointed out, which is something like: $$\iint\limits_S F\cdot dS=\iiint\limits_E\nabla\cdot F\ dV$$
frank0520
  • frank0520
\[\int\limits_{0}^{1}\int\limits_{0}^{1-x}\int\limits_{1}^{1-x-y}dzdydx\]
anonymous
  • anonymous
now, using Cartesian coordinates so \(dV=dz\ dy\ dx\) $$\int_0^1\int_0^{1-x}\int_0^{1-x-y}\nabla\cdot F\ dz\ dy\ dx$$ clearly \(\nabla\cdot F=(5x^4-2) +2\cos(2y)+4\sin^2(y)\) so: $$\int_0^1\int_0^{1-x}\int_0^{1-x-y}\left(5x^4-2+2\cos(2y)+4\sin^2(y)\right)\,dz\,dy\,dx$$
frank0520
  • frank0520
can you tell me if I have the correct limits
anonymous
  • anonymous
no, \(0\le z\le 1-x-y\)
frank0520
  • frank0520
Thanks for the help, I had a typo with the dz limit
ganeshie8
  • ganeshie8
At this point, you may use wolfram to evaluate the triple integral for you http://www.wolframalpha.com/input/?i=%5Cint_0%5E1%5Cint_0%5E%7B1-x%7D%5Cint_0%5E%7B1-x-y%7D%5Cleft%285x%5E4-2%2B2%5Ccos%282y%29%2B4%5Csin%5E2%28y%29%5Cright%29%5C%2Cdz%5C%2Cdy%5C%2Cdx

Looking for something else?

Not the answer you are looking for? Search for more explanations.