Use the Divergence Theorem to calculate the flux of F(x,y,z)=(x^5 +y^5 +z^5 -2x-3y-4z)i+sin(2y)j+4z(sin(y))^2 k across the surface of the tetrahedron bounded by the coordinate planes and the plane x+y+z=1.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use the Divergence Theorem to calculate the flux of F(x,y,z)=(x^5 +y^5 +z^5 -2x-3y-4z)i+sin(2y)j+4z(sin(y))^2 k across the surface of the tetrahedron bounded by the coordinate planes and the plane x+y+z=1.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1436838723223:dw|
\[\iint\limits_{S}\vec{F}\bullet d\vec{S}~=~\iiint \limits_{E}\text{div}(\vec{F}) dV \]
work the divergence and plug it in

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

we can write this as a volume integral over \(E=\{(x,y,z)\in\mathbb{R}^3:x+y+z\le 1, x\ge 0, y\ge0, z\ge0\}\) using the divergence theorem as ganeshie8 pointed out, which is something like: $$\iint\limits_S F\cdot dS=\iiint\limits_E\nabla\cdot F\ dV$$
\[\int\limits_{0}^{1}\int\limits_{0}^{1-x}\int\limits_{1}^{1-x-y}dzdydx\]
now, using Cartesian coordinates so \(dV=dz\ dy\ dx\) $$\int_0^1\int_0^{1-x}\int_0^{1-x-y}\nabla\cdot F\ dz\ dy\ dx$$ clearly \(\nabla\cdot F=(5x^4-2) +2\cos(2y)+4\sin^2(y)\) so: $$\int_0^1\int_0^{1-x}\int_0^{1-x-y}\left(5x^4-2+2\cos(2y)+4\sin^2(y)\right)\,dz\,dy\,dx$$
can you tell me if I have the correct limits
no, \(0\le z\le 1-x-y\)
Thanks for the help, I had a typo with the dz limit
At this point, you may use wolfram to evaluate the triple integral for you http://www.wolframalpha.com/input/?i=%5Cint_0%5E1%5Cint_0%5E%7B1-x%7D%5Cint_0%5E%7B1-x-y%7D%5Cleft%285x%5E4-2%2B2%5Ccos%282y%29%2B4%5Csin%5E2%28y%29%5Cright%29%5C%2Cdz%5C%2Cdy%5C%2Cdx

Not the answer you are looking for?

Search for more explanations.

Ask your own question