frank0520
  • frank0520
Let F be the vector field F=(13x^2 y+3y^3 -y)i -12x^3 j. Find the maximum value of ∫F•dr where c is positively oriented simple closed curve.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
You may start with green's thm I think
ganeshie8
  • ganeshie8
@dan815
ganeshie8
  • ganeshie8
\[\oint F.dr = \iint\limits_{R} \text{curl}(F)~dA = \iint\limits_{R} -49x^2-9y^2+1~dA \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
Easy to see that the integrand stays positive in the region \(49x^2+9y^2 \lt 1\), so should we pick this as region of integration ?
frank0520
  • frank0520
Here is a picture of the question.
1 Attachment
ganeshie8
  • ganeshie8
Then we're correct, go ahead and evaluate the integral over that ellipse
ganeshie8
  • ganeshie8
\[max(\oint F.dr) ~= ~\iint\limits_{49x^2+9y^2\lt 1}~~1-49x^2-9y^2~dA\]
ganeshie8
  • ganeshie8
you will need to use change of variables
ganeshie8
  • ganeshie8
I'm getting \(\dfrac{21\pi}{2}\) http://www.wolframalpha.com/input/?i=21*%5Cint_0%5E%282pi%29%5Cint_0%5E1+%281-r%5E2%29*r+dr+d%5Ctheta
frank0520
  • frank0520
looks correct to me, I got \[\frac{ 42\pi }{ 4 }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.