Find a particular solution to \[y'' + 4y = f(t)\] where \(f(t)\) is given by the graph-

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find a particular solution to \[y'' + 4y = f(t)\] where \(f(t)\) is given by the graph-

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1436869131827:dw|
wow XD
*

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I could've sworn that I've seen that graph before but can't remember... could be a second order ode \[r^2+4 = \] what the function of the graph is x.x
Well the homogeneous equation is just the wave equation which is nice, for C a complex number we have: \[y_h = c e^{i 2 x}\] and I think from here there's some Fourier transform sorta stuff we can do, since our function is essentially just an odd function raised up by a constant, so we can express it in terms of sines.
you guys are so good at it -_-! Teach me your secrets...another day. I am going to bed.
earlier i was hoping to shift down the graph by 1/2 units and find the coefficient \(b_n\) using usual fourier series integral as @Empty was suggesting this euler-fourier method looks neat, but is there an easy way to get real part out of \(f(t)\).. idk if it is even necessary, im just asking because im seeing for the first time...
shifting the function down by 1/2 is decomposing it into the sum of an even and an odd function, it doesn't actually simplify the resultant fourier series
it just separates it into the fourier transform of a constant and then an even periodic function, so the even and odd coefficients get separated but you have to recombine them anyways
Yeah you can write the function f(t) using the \(sgn\) function which just returns 1 if positive, -1 if negative, and 0 if neither as: \[f(t) = \frac{1}{2} sgn( \sin( t \pi) ) + \frac{1}{2} \] Is this what you're asking for?
hmm, consider the equation $$y''+4y=\delta(t-s)$$which gives rise to $$(\omega^2+4)Y(\omega)=e^{-i\omega s}\\Y(\omega)=\frac{e^{-i\omega s}}{\omega^2+4}$$while $$\mathcal{F}\{e^{-2|t|}\}=\frac4{\omega^2+4}\qquad\mathcal{F}\{f(t-s)\}=e^{-i\omega s}f(t)$$ so \(y(t)=\frac14 \exp(-2|t-s|)\) is the Green's function, so the solution to $$y''+4y=f(t)$$ is just $$y(t)=\frac14\int_{-\infty}^\infty e^{-2|t-s|} f(t)\,ds$$
oops, I meant \(y_s(t)=\frac14\exp(-2|t-s|)\) is the Green's function (response \(y(t)\) to an impulse at \(t=s\))
oops, I meant $$\begin{align*}y(t)&=\int_{-\infty}^\infty e^{-2|t-s|} f(s)\, ds\\&=\int_{-\infty}^t e^{2(t-s)}f(s)\, ds+\int_t^\infty e^{-2(t-s)}f(s)\,ds\\&=e^{2t}\int_{-\infty}^te^{-2s} f(s)\, ds+e^{-2t}\int_t^\infty e^{2s}f(s)\, ds\end{align*}$$now to just figure out a nice way to do those integrals
oops, i meant: $$\begin{align*}y(t)&=\int_{-\infty}^\infty e^{-2|t-s|} f(s)\, ds\\&=\int_{-\infty}^t e^{-2(t-s)}f(s)\, ds+\int_t^\infty e^{2(t-s)}f(s)\,ds\\&=e^{-2t}\int_{-\infty}^te^{2s} f(s)\, ds+e^{2t}\int_t^\infty e^{-2s}f(s)\, ds\end{align*}$$ anyways now using \(f(s)=\frac12 (\operatorname{sgn}(s)+1)\) so:$$\frac12\left(\int_{-\infty}^t e^{2s}\operatorname{sgn}(s)\,ds+\int_{-\infty}^t e^{2s}\, ds\right)$$
.
**ignoring the complementary solution**, the Laplace Transform gives: \(\hat y (s^2 + 2^2)= \mathcal L\{f(t)\}\) where \(f(t) = f(t + 2)\), f(t) being the periodic repetition of \(f_1(t) = u_0(t) - u_1(t)\), period = 2 using the Rule numbers as listed in Pauls Online ...[http://tutorial.math.lamar.edu/Classes/DE/Laplace_Table.aspx] from ***Rule 34: \(\large \mathcal L \{ f_1(t) = \large \frac{\int_{0}^{2} e^{-st}} {1 - e^{-2s}} = [\frac{1}{s} - \frac{e^{-s}}{s}] . \frac{1}{1 - e^{-2s}}\) so \(\hat y(s) = \frac {1 - e^{-s}}{s(s^2 + 2^2)} . \frac{1}{1 - e^{-2s}}\) the bit at the end can be ignored as we are looking for another periodic function \(y_1(t)\) of period 2. \( y_1(t) = \mathcal L^{-1} \{ \frac {1 - e^{-s}}{s(s^2 + 2^2)} \}\) \( \mathcal L^{-1} \{ \frac {1 }{s(s^2 + 2^2)} \} = \mathcal L^{-1} \{ \frac{G(s)}{s}\}\) ***Rule 32 \( g(t) = \frac{1}{2} \ sin 2t\) \(\int_{0}^{t} \frac{1}{2} sin \ 2 \nu \ d \nu \implies \frac{1}{4} (1 - cos \ 2t)\) \( \mathcal L^{-1} \{ \frac { - e^{-s}}{s(s^2 + 2^2)} \} = \mathcal L^{-1} \{ e^{-s} F(s) \} = u_1(t)f(t-1)\) ***Rule 27 where \( f(t) = \frac{1}{4} (1 - cos \ 2t)\) so \( y_1(t) = \frac{1}{4} (1 - cos \ 2t) - \frac{1}{4} u_1(t) (1 - cos \ 2(t-1)) \) i think.

Not the answer you are looking for?

Search for more explanations.

Ask your own question