What is the sum of the first 19 terms of an arithmetic series with a rate of increase of 7 and a7 = 46? 1,197 1,273 1,373 1,423 1,327

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is the sum of the first 19 terms of an arithmetic series with a rate of increase of 7 and a7 = 46? 1,197 1,273 1,373 1,423 1,327

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

since the general formula for the n-th term is: \[\Large {a_n} = {a_1} + \left( {n - 1} \right)d\] where d is constant of your sequance, namely d=7, then we can write: \[\Large \begin{gathered} {a_7} = {a_1} + \left( {7 - 1} \right) \times 7 \hfill \\ \hfill \\ 46 = {a_1} + \left( {7 - 1} \right) \times 7 \hfill \\ \end{gathered} \] please solve for a_1
hint: \[\Large 46 = {a_1} + 42\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

after that we have to compute a_19, using the same general formula above: \[\Large {a_n} = {a_1} + \left( {n - 1} \right)d\] so we have: \[\Large {a_{19}} = {a_1} + \left( {19 - 1} \right) \times 7 = ...?\]
then the requested sum S is given by the subsequent formula: \[\Large S = \frac{{{a_1} + {a_{19}}}}{2} \times 19 = ...?\]
I got it!! Thank you!
thanks! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question